

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Pneumatic Vane Type Rotary Actuator PRO-PRN Series

ENGINEERING YOUR SUCCESS.

Pneumatic HI-ROTOR

Vane Type Rotary Actuator

Miniature HI-ROTOR

New models PRNA1, 3, 10, 20

Double vane type is added as a new model. (Its effective torque doubles single vane type.)

Full series line-up

1

A full line of 1, 3, 10, 20, 30, 50, 150, 300, 800 is available. For PRNA1 and bigger models, single and double vane type (with double the effective torque) are available. For PRN50 and bigger models, a series of specially made cushion units (CRN) are available. In addition, there are HI-PAL HI-ROTORs of PRHA10 and bigger (incorporating solenoid valve).

Easy-to-use oscillating angle

Three oscillation reference points of 40°, 45° and 90° and five oscillating angles of 90°, 100°, 180°, 270° and 280° are featured. Oscillating angles that are frequently used are standardized for wide selection. Non-standard oscillating angles are available on request.

Stable operation

Uniquely designed sealing mechanism minimizes leakage, assuring low speed oscillating and stable, smooth operation at low pressures and speeds.

Durability to high temperature (PRNA1~20)

Use of dry air dehumidified through an air dryer makes it possible to use HI-ROTOR within a surrounding temperature range of $-5^{\circ}C \sim 80^{\circ}C$. (PRN : Usable at a maximum of 60°C)

Outstanding durability

A solid vane shaft and built-in damper are combined with a unique sealing mechanism to assure outstanding durability. PRN50 and bigger models are capable of operating a greater load with the incorporation of a Hydro-cushion.

Flexibility to meet special shape of shaft

Designed to meet special shape of shafts such as hollow shafts and lead screws. (See Page 65.)

HI-ROTOR

CONTENTS

Feature	P.1
Sizing map	P.3
For Safety Use	P.4
HI-ROTOR/Common Instructions	P.5
Magnetic Proximity Switch/Common Instructions	P.9
Miniature HI-ROTOR/Standard type PRN series	——————————————————————————————————————
Miniature HI-ROTOR/Variable oscillating angle type PRO series	P.22
HI-ROTOR/Standard type PRN series	
Air-hydro HI-ROTOR/PRF series	
Miniature HI-PAL HI-ROTOR/With solenoid valve PRH series	———— P.41
HI-PAL HI-ROTOR/With solenoid valve PRH series	——— P.46
Switch unit (Fixed switch position type) for miniature HI-ROTOR	P.52
Switch unit (Variable switch position type) for miniature HI-ROTOR	P.53
Switch unit (Variable switch position type) for HI-ROTOR	——— P.55
Hydro-cushion CRN series	P.60
HI-ROTOR with Special Shape of Shaft (Made-To-Order)	
Reference data for selecting HI-ROTOR	P.67
Key for HI-ROTOR	———— P.70

Sizing map

The sizing map helps you to easily find the optimum combination of HI-ROTOR and pneumatic valves. It shows the standard combination of each model of HI-ROTOR with pneumatic valves and the oscillation time obtainable with a particular combination.

Model of HI-I	ROTOR	1	3	10	20	30	50	150	300	800	
Port siz	e	M5	M5	M5	Rc1/s	Rc1/s	Rc1/8	Rc1⁄4	Rc%	Rc1⁄2	
Effective output torque(N·cm)	Single vane	12.9	31	98	170	319	479	1500	2850	10200	
at 0.5MPa	Double vane	28.6	71	211	388	770	1040	3500	6800	20600	
	0.1 —						-				
Oscillating tim (s) At oscillating an	n gle 0.3 —			A05 s	series						
of 180°, unload	ed 0.4 —							A12 s	series		
	0.5 —									A20 series	
_				A05 s							
Recomment solenoid va	alves				A12 serie			s			
	ADEX VALVE								A20 series		
	Standard Recommended type		P-H-M5 PER-H-M	5	SP-2 SPE-	2H-1 -2H-1	SP-06-1 SPE-06-1	SP-06-2 SPE-06-2	SP-15-3 SPE-10-3	SP-15-4 SPE-15-34	
speed controller	s With fitting		B4R-M5 4R-M5			6R-01SC- R-01SC-0	-	B8R-02SC-0 8R-02SC-0	B8R-03SC-0 8R-03SC-0	B10R-04SC-0 10R-04SC-0	

(Note) • The above-mentioned oscillating time is an approximate value based on the assumption that a tube 1 m long is used for piping and the HI-ROTOR is unloaded. The oscillating time is an approximate value based on the absorbing time at table 1 milling is used to piping a HI-ROTOR is unloaded. The oscillating time varies if the HI-ROTOR is loaded or different size tubes and fitting are used. •The above-mentioned oscillating time is 180°. For and oscillating time at other angles, estimate on the basis of the above.

FOR SAFETY USE

Be sure to read the following instructions before use.
 For common and individual instructions, refer to the text of this catalogue.

The following safety precautions are provided to prevent damage and danger to personnel and to provide instructions on the correct usage of this product. These precautions are classified into 3 categories; "CAUTION", "WARNING" and "DANGER" according to the degree of possible injury or damage and the degree of impendence of such injury or damage.

Be sure to comply with all precautions along with JIS B8370^(%1) and ISO 4414^(%2), as they include important content regarding safety.

	:	Indicates a potentially hazardous situation which may arise due to improper handling or operation and could result in personal injury or property-damage-only accidents.
	•	Indicates a potentially hazardous situation which may arise due to improper handling or operation and could result in serious personal injury or death.
△DANGER	:	Indicates an impending hazardous situation which may arise due to improper handling or operation and could result in serious personal injury or death.

(**1) JIS B8370 : General Rules for Pneumatic Systems (**2) ISO 4414 : Pneumatic fluid power-General rules relating to systems

HI-ROTOR/COMMON INSTRUCTIONS (1)

Be sure to read them before use. $^{\rm L}$ Also refer to Par. "For Safety Use" and instructions mentioned for each series.

DESIGN

• When HI-ROTOR is subject to load fluctuation, up/down movement and fluctuating frictional resistance, make a safty design in due consideration of such factors.

Operating speed of HI-ROTOR will increase, causing a damage to machine and an injury to human body.

- Especially when there is the possibility that the human body is endangered, fit a protective cover. When there is the possibility that applied load or the moving part of the HI-ROTOR endangers the human body, design the system so that the human body cannot directly touch these parts.
- Speed-reducing circuit or shock absorber will be required according to circumstances.

Set inertial energy to less than allowable value. When load speed is high or mass is large, inertial energy of load exceeds allowable value, making it difficult for HI-ROTOR to absorb shocks.

In this case, provide a speed-reducing circuit or a shock absorber on the load side and also thoroughly examine the rigidity of machine.

• Take into consideration the possibility of pressure failure in the circuit due to outage etc.

For an HI-ROTOR used in the clamping mechanism, if clamping pressure in the circuit lowers due to outage etc., clamping force will reduce, so that the load may sometimes come off. To avoid such danger, design the system to incorporate a safety device to protect the human body and machine. Also provide the hanger and lift with proper prevention against dropping.

 Take into consideration the possibility of power failure.

Take proper countermeasures against equipment controlled by air pressure, electricity, hydraulic pressure, etc. so as to protect the human body and machine even if these power sources are faulty.

• Use prevention against runaway of load in designing a circuit.

If compressed air is supplied to one side of vane without residual air in HI-ROTOR, (for example, HI-ROTOR is operated by 3-position exhaust center type solenoid valve or restarted after residual air in circuit is exhausted), HI-ROTOR will suddenly actuate, causing a damage to machine and an injury to human body.

• Take into consideration the action of HI-ROTOR in an emergency.

When the machine is stopped by a person in an emergency or stopped by the safety device due to the occurrence of outage, system trouble, etc., the HI-ROTOR may catch the human body or damage the machine according to circumstances. To avoid such an accident, take into consideration the action of HI-ROTORs in designing a system so as to prevent an injury to the human body and a damage to the machine.

DESIGN

• Take into consideration the action of an HI-ROTOR when it restarts from stoppage in an emergency or abnormal state.

Make a design to prevent an injury to the human body and a damage to the machine when the HI-ROTOR is restarted. When it is necessary to reset the HI-ROTOR to the starting position, make a design to incorporate a safety manual control unit.

• Do not use HI-ROTOR as a shock absorber.

When abnormal pressure is applied or air leak occurs, speedreducing effect is considerably lost, sometimes resulting in a damage to machine and an injury to human body.

 Do not stop HI-ROTOR halfway only by means of directional control valve or do not leave HI-ROTOR stopped there.

HI-ROTOR and directional control valve are designed to tolerate a certain degree of air leak. Even if HI-ROTOR is stopped halfway by shutting in air using directional control valve without an external stopper provided for HI-ROTOR, the stop position cannot be held due to air leak; this may result in a damage to machine and an injury to human body.

• Firmly tighten fixed part and joint.

When using HI-ROTOR for heavy-duty purposes such as continuous operation or using in vibratory place, apply a secure tightening method.

• Remodeling HI-ROTOR Do not remodel HI-ROTOR.

- Use HI-ROTOR within specified oscillation time. If used in lower speed range than specified, HI-ROTOR will not smoothly operate due to a stick and slip phenomenon.
- Do not apply torque exceeding rated output to HI-ROTOR from the outside.

If HI-ROTOR receives external force over rated output, it may be broken according to circumstances.

- When repeatability acuracy for oscillating angle is required, provide a stopper on the outside to stop load directly.
- When adjusting the driving speed of an HI-ROTOR, install a speed controller.

Adjust the driving speed on the low speed side and then adjust it gradually until the prescribed speed is attained.

HI-ROTOR/COMMON INSTRUCTIONS (2)

Be sure to read them before use. Also refer to Par. "For Safety Use" and instructions mentioned for each series.

SELECTION

• Refer to specifications.

HI-ROTOR listed in this catalogue are designed for compressed air.

When using other fluid than compressed air, contact KURODA beforehand.

Do not use the HI-ROTOR outside the specified pressure and temperature range; this may result in a breakdown or faulty operation.

INSTALLATION

• Do not start the system before making sure that equipment is properly operated.

After installing the HI-ROTOR, connect compressed air and power supply.

Perform functional test and leak test properly and check that the system is correctly operated with safety. Then start the system.

Coating with paint

When coating the resin portion with paint, it may be adversely affected by paint and solvent. For the propriety of painting, contact KURODA beforehand.

Do not peel off the nameplate affixed on the HI-ROTOR and do not erase or smear out the letter on it.

• When adjusting the oscillation angle of HI-ROTOR by applying pressure, take proper means to prevent HI-ROTOR from rotating beyond required level.

If HI-ROTOR is rotated beyond required level, it will sometimes cause a hazardous situation.

• Do not loosen the angle adjust screw of HI-ROTOR over adjustable range.

If it is loosened over adjustable range, the angle adjust screw will come off, causing a damage to machine and an injury to human body.

• When using a shaft coupling, select one with degree of freedom.

If a shaft coupling without degree of freedom is used, a kink will occur due to eccentricity, causing a malfunction or damage to products; this sometimes result in a damage to machine and injury to human body.

• Provide space for maintenance and inspection.

INSTALLATION

· Do not apply excessive load to shaft.

If excessive load over allowable value is applied to shaft, it will cause a malfunction or breakdown, sometimes resulting in a damage to machine and an injury to human body.

HI-ROTOR is capable of receiving up to allowable radial thrust load prescribed in specifications in a state where no inertial load occur. However, avoid using HI-ROTOR in such a manner that load is directly applied to the shaft.

In order to improve operating conditions, it is recommended that no load be directly applied to the shaft by using a method shown in Fig. below:

• Install an external stopper in a separate place from the shaft.

If a stopper is located near the shaft, reaction force exerted on the stopper due to torque of HI-ROTOR itself is applied to the shaft and thus damages the shaft and bearing. The reaction force will also break machine and injure human body.

- Do not wipe off the model name inscribed on a nameplate etc. with organic solvent.
 The inscribed indication may be erased.
- Do not step your foot directly on the shaft and equipment fitted to the shaft.

Stepping on the shaft directly will cause a damage to bearing etc.

• Do not hit the shaft with the body fixed or do not hit the body with the shaft fixed; otherwise causing to bend the shaft and damage the bearing.

When mounting a load on the shaft, set HI-ROTOR in such a manner that the body does not receive force as shown in Fig. below:

HI-ROTOR/COMMON INSTRUCTIONS ③

Be sure to read them before use. Also refer to Par. "For Safety Use" and instructions mentioned for each series.

PIPING

Before piping

Thoroughly flush the inside of each pipe to remove chips, coolant, dust, etc. before piping.

· How to wind a seal tape

When winding a seal tape around the threaded portion, leave space of 1.5 to 2 thread turns.

· How to apply liquid sealant

When applying liquid sealant to the threaded portion, apply a proper amount to about \mathcal{V}_3 of the periphery of the threaded portion and then screw it.

PIPING

Screw of pipe and joint

When screwing the pipe and joint, use care to prevent chips and sealant from entering the pipe and joint.

Tighten them within a proper range of clamping torque.

Port size	Clamping torque (N·m)
M5	1.5~ 2.0
R, Rc1⁄8	7.0~ 9.0
R, Rc1⁄4	12.0~14.0
R, Rc3⁄8	22.0~24.0
R, Rc1⁄2	28.0~30.0

· Avoid wrong piping.

When connecting a pipe to a Rotary Actuator, be careful not to mistake the supply port by referring to the nameplate affixed to the product or the product catalogue.

LUBRICATION

• HI-ROTOR listed in this catalogue are non-lubrication. The non-lubricated HI-ROTOR can be used without lubrication, but can be used with lubrication.

When using it with lubrication, do not discontinue supplying oil. Otherwise, the applied lubricant may run off, sometimes resulting in an operation failure.

When using a lubricant, Class 1 turbine oil ISO VG 32 (containning additive) is recommended.

Do not use spindle oil and machine oil. Otherwise, the seal and packing may be damaged.

HI-ROTOR/COMMON INSTRUCTIONS ④

Be sure to read them before use. Also refer to Par. "For Safety Use" and instructions mentioned for each series.

QUALITY OF AIR

• Use pure air

Compressed air containing corrosive gases, chemicals, salt, etc. causes a breakdown or operation ailure. So do not use such air.

• Fit an air filter with filtration of 5 μ m or fine.

· Install an air dryer.

Compressed air containing much drainage causes the operation failure of pneumatic equipment. Install an air dryer, lower the temperature and reduce drainage.

• Take proper countermeasures against sludge.

If sludge produced in compressor oil enters pneumatic equipment, it will cause the operation failure of pneumatic equipment. It is recommendable to use compressor oil (NISSEKI FAIRCALL

A68, IDEMITSU DAPHUNY SUPER CS68) featuring minimized sludge production or use a sludge filter or mist cleaner to prevent sludge from entering the pneumatic equipment.

Use at low temperature

When using pneumatic equipment at temperature of 5 $^\circ$ C or below, install an air dryer or take other countermeasures to prevent drainage and moisture in compressed air from freezing or solidifying.

OPERATING ENVIRONMENT

· Do not use HI-ROTOR in a explosive environment.

WARNING

- · Do not use HI-ROTOR in a corrosive environment.
- Do not use HI-ROTOR in a place attended with much dust, water drops or oil drops.

MAINTENANCE AND INSPECTION

Inspection before doing maintenance

Check that proper prevention against drop of load and runaway have been taken, before turning off air and power supply to equipment and discharging air remaining in the system. For 3-position all port block (closed center) type, compressed air is sealed in between solenoid valve and Rotary Actuator. So purge the residual air.

· Inspection after finishing maintenance

When connecting the system to compressed air supply and power supply, HI-ROTOR may sometimes suddenly actuate. Therefore, when restarting the system, thoroughly check the safety of surrounding conditions before connecting the pneumatic system to compressed air supply and power supply. Furthermore, perform a proper functional test and a leak test to check that the system normally operates.

Disassembling HI-ROTOR

When disassembling HI-ROTOR, consult our company beforehand.

Draining

To maintain constant air quality, drain the air filter periodically.

MAGNETIC PROXIMITY SWITCH/COMMON INSTRUCTIONS (1)

Be sure to read them before use. Also refer to Par. "For Safety Use" and instructions mentioned for each series.

DESIGN AND SELECTION

• Use the switch within the range of specifications described in this catalogue.

Applying load current, voltage, temperature and shock exceeding the range of specifications will cause a damage to the switch and a faulty operation.

Thoroughly read the specifications and use the switch within the range of the specifications.

Especially, be sure to use the switch within the maximum contact capacity and operating current range.

· Be careful of distance between adjacent HI-ROTOR.

When 2 or more HI-ROTORs, each of switch is equipped with a switch are close installed or a magnetic material moves very close to the HI-ROTOR, there is the possibility that the switch malfunctions due to magnetic interference between the switch and magnetic material.

- Pay attention to switch-on time at the center of stroke.
- Example : The vane is set at the center of stroke and load is driven when the vane passes the switch. In this case, if oscillating speed is extremely high, operating time is short even when the switch is turned on.

As a result, load cannot be fully moved according to circumstances.

In this case, oscillating speed is expressed as follows :

 $V = \frac{\text{Operating range of switch (mm)}}{\text{Operating time of load (ms)}} \times 1000 \quad (mm/s)$

• Reduce the length of wiring as much as practicable. $\langle \mathsf{Reed} \ \mathsf{switch} \rangle$

When capacitive load is driven or the wiring from switch to load is long, inrush current increases due to line floating capacty at the time of switch-on; this results in a damage to the switch or shortens the switch service life.

 In designing a system, provide a distance of more than 40 mm between the HI-ROTOR. (When a permissible distance is specified for each HI-ROTOR, follow the specified distance.)

• Even when using a switch with built-in contact protective circuit and length of wiring is more than 30 m, the protective circuit may not fully absorb inrush current according to circumstances; this sometimes shortens the switch service life. For how to connect a protective circuit contact KURODA.

<Proximity switch>

When inrush current caused by line floating capacity occures, take a proper countermeasure to absorb the rush current.

DESIGN AND SELECTION

· Be careful of leak current.

For a 2-wire proximity switch, current (leak current) flows in it to operate the internal circuit even if the switch is turned off. When 2 or more switches are connected in parallel, leak current increases corresponding to the number of connected switches. When leak current is larger than operating current for turning off load, the load is not turned off.

• Be careful of internal voltage drop of switch. $\langle \mbox{Reed switch} \rangle$

When 2 or more switches with LED are connected in series, voltage drop occurs by the number of connected switches due to the resistance of light emitting diode. (Refer to "Internal Voltage Drop" described in "Specifications for Switch".)

Note that load may not be sometimes moved even if the switch operates normally.

When the voltage drop of light emitting diode becomes a problem, use a switch without LED.

<Proximity switch>

When connecting 2-wire proximity switches in series, pay attention to the same points as those for connecting reed switches. However, note that the internal voltage drop is generally larger than that of reed switches.

Do not use load that produces surge voltage. (Reed switch)

When driving a relay or other load that produces surge voltage, use a switch with built-in contact protective circuit or connect a protective circuit to the switch.

<Proximity switch>

A zener diode for surge protection is connected to the output side of a proximity switch. However, it may be broken if surge is repeatedly applied to it.

When directly driving a relay, solenoid valve or other load that produces surge, use a switch with built-in surge absorbing element.

MAGNETIC PROXIMITY SWITCH / COMMON INSTRUCTIONS (2)

Be sure to read them before use.

Also refer to Par. "For Safety Use" and instructions mentioned for each series.

DESIGN AND SELECTION

 When using the switch in an interlock circuit, pay attention to the following points;

When a switch for HI-ROTOR is used for interlock signals requiring high degree of reliability, provide the switch with a mechanical protective function against trouble and malfunction or use a double-interlock system by using the switch together with other switch (sensor etc.).

In addition, check the switch periodically to make sure that it works normally.

· Provide space for maintenance.

In designing a system, take into account space for maintenance and inspection.

INSTALLATION AND ADJUSTMENT

• Do not drop or hit the switch.

When handling the switch, do not drop or hit it or do not apply an excessive shock to it (refer to specification for each switch).

• Do not swing around the switch while holding the lead wire.

If excessive tensile force is applied to the lead wire, the inside wire may be broken or the internal mechanism of the switch may suffer a damage.

• Fix the switch with prescribed clamping torque.

When the switch is fixed with clamping torque exceeding the prescribed value, the set screw, metal fixture, switch, etc. may be broken.

• Set switch to center of working range.

When magnet on the shaft rotats in one direction to a point at which the switch is turned on and then rotats in opposite direction to a point at which the switch is turned off, the angle of shaft rotation between these two points is called hysteresis.

When the switch is installed within this range, operation may be unstable according to circumstances.

Install the switch so that magnet is located at the center of working range (within which the switch is turned on.).

• Do not wipe off the model name inscribed on a nameplate etc. with organic solvent. The inscribed indication may be erased.

MAGNETIC PROXIMITY SWITCH/COMMON INSTRUCTIONS (3)

Be sure to read them before use.

Also refer to Par. "For Safety Use" and instructions mentioned for each series.

WIRING

 Properly wire in accordance with each lead wire color or terminal No.

In this case, be sure to turn off power to the electric circuit on the connection side.

· Do not make wrong wiring.

As DC current has polarity, do not confuse (+) with (-).

<Reed switch>

When the connection of wiring is reversed, the switch is operated but the lamp is not on.

If current exceeding the prescribed operating range flows to the switch, the lamp will be broken and the switch fails.

<Proximity switch>

Even if the connection of wiring of a 2-lead wire switch is reversed, the protective circuit prevents the breakdown of the switch. In this case, however, the switch is left turned on. Note that, if the connection of wiring of a 2-lead wire switch is reversed with load short-circuited, the switch will be broken.

If the power line of a 3-lead wire switch is reversely wired ("+" replaces with "-"), the protective circuit will protect the switch. However, note that, if the power line is replaced with the output line by mistake, the switch will be broken.

 Do not wire the switch together with the power line and high voltage line.

Wire the switch by keeping away from the power line and high voltage line.

Otherwise, the control circuit including the switch may malfunction due to noise.

• Avoid applying repetitive bending stress and tensile force to the lead wire.

When setting the switch in a moving part, sag the wiring so that repetitive stress and tensile force will not be applied to the lead wire.

Wiring that produces repetitive bending stress and tensile force cause the breaking of wire.

Check for poor insulation.

Check lead wire connection, extension cable and terminal base for poor insulation. If poor insulation occurs, excess current will flow to the switch, sometimes resulting in a damage to the switch.

• Be sure to connect load before turning on power supply.

When a 2-lead wire switch is turned on without connecting load such as relay, PLC, etc., excess current will momentarily flow to the switch, resulting in a damage to the switch.

• Do not turn on the switch with load short-circuited. If the switch is turned on with load short-circuited, excess current will flow to the switch, sometimes resulting in a damage to the switch.

WIRING

VARNING

 It is possible to provide power supply to load and power supply to switches individually and also to use them in common.

When power supplies are individually provided, they should have the same voltage.

E₁ and E₂ should be the same voltage.

Black)

Bracketed () color is former color.

MAGNETIC PROXIMITY SWITCH/COMMON INSTRUCTIONS ④

Be sure to read them before use. Also refer to Par. "For Safety Use" and instructions mentioned for each series.

OPERATING ENVIRONMENT

 Never use the switch in an explosive or ignitable atmosphere.

As the switch is not proof against explosion, never use it in an explosive gas atmosphere or ignitable atmosphere ; otherwise causing an explosion or fire.

• Do not use the switch in a place where there is a strong magnetic field or a large current.

If the switch is used in a place where there is a strong magnetic field or a large current (large magnet, spot welding machine, etc.), the switch will malfunction or the magnet will be demagnetized.

• Do not use the switch in a place where it is always splashed with water.

Excepting some type of switch, these switches meet structural specifications IP65 prescribed by IEC Standard (refer to specifications for each switch). However, do not use the switch in a place where water is always poured on it; otherwise causing insulation failure and malfunction.

• Do not use the switch in an environment containing oil and chemicals.

When the switch is used in an environment containing coolant, washings, oils and chemicals, the inside of the switch is adversely affected even if it is used for a short period of time. When it is necessary to use the switch in such an environment, contact KURODA.

• Do not use the switch in a place where an extreme temperature change occurs.

Using the switch in a place attended with an unusual temperature change will adversely affect the inside of the switch. When it is necessary to use the switch in such an environment, contact KURODA.

• Do not use the switch in a place where an excessive shock occurs.

<Reed switch>

For a reed switch, if an excessive shock (over $980m/s^2$) is applied to it during operation, the contact may malfunction according to circumstances.

When a proximity switch is used in place of a reed switch, the deficiency can be reduced. In this case, check shock resistance given in specifications.

 Do not use the switch in a place where surge is produced.

<Proximity switch>

When there is a large surge source around the proximity switch, the circuit element in the switch may be adversely affected.

OPERATING ENVIRONMENT

WARNING

 Be careful of adjacent magnetic material. Keep the switch away from magnetic material by more than 3.5 mm.

When there is magnetic material such as iron close to the HI-ROTOR with a built-in magnet is absorbed and thus the switch may not operate according to circumstances.

Note that, when chips and iron powder such as weld spatters accumulate during operation, the same situation as abovementioned will also occur.

MAINTENANCE AND INSPECTION

Perform the following maintenance and inspection periodically.

• Check the switch set screw and metal fixture for looseness and retighten as necessary.

If the switch set screw and metal fixture are loosened, the switch set position will shift, resulting in an unstable operation or malfunction.

Readjust the set position and tighten the set screw and fixture.

· Check the lead wire for damage.

A damage to the coating of the lead wire may lead to insulation failure and breaking of wire.

When a damage is found, change the switch and repair the lead wire immediately.

Miniature HI-ROTOR/Standard type PRNseries 1S, 3S, 10S, 20S, 30S, 1D, 3D, 10D, 20D, 30D

PRNA20S

90

Ó

90 S

> Ż 3

Ρ

Ġ

FR

(5

6

OSCILLATION STARTING POINT AND OSCILLATION ANGLE

PRNA1S/D, PRNA3S/D PRNA10S/D, PRNA20S/D, PRN30S/D Oscillating reference point at 45° Oscillating reference point 45 ort n osition Scillating angle Scillating angle 210 PRNA1S, PRNA3S PRNA10S, PRNA20S Oscillating reference point at 90° Port position Oscillating reference point ating angle Oscillating angle

Model No. Single vane Double vane PRNA1S PRNA1D PRNA3S PRNA3D PRNA10D PRNA10S PRNA20D PRNA20S PRN30S PRN30D 4 Mounting hardware ①Oscillating angle No mark No mounting hardware 90 90 Ρ With flange plate 180 180 L1 With one foot plate 270 270° 12 With two foot plates 2 Oscillating reference point (5)Type of switch units 90 90 No mark No switch 45 45 FR With CT-3 switch Switch position FU With CT-3U switch ③Port position adjustable No mark | Standard FP With CTP-3 switch SR With SR switch Switch position S On the rear cover fixed SU With SU switch (Note) S is not available for Models (Note) • Two switches are provided. PRN30S and 30D. •Only FR and FU are available for PRNA1. •FP is made-to-order 6 Custom-made shafts (Refer to P.53) (Note) • Switch units and mounts with two foot plate are not available on "S" (Ports on the rear cover) model. •Switch units cannot be mounted on HI-ROTORs with two foot plates (L2). ·Mounting hardware comes being not fabricated. Oscillating angle and oscillating reference point Oscillating angle Oscillating reference point Model No. 90 180 270 45° 90° PRNA1S \bigtriangleup \bigtriangleup \bigtriangleup 0 0 PRNA3S \triangle \bigtriangleup PRNA10S \bigtriangleup \triangle \triangle 0 PRNA20S \triangle \triangle \triangle PRN30S PRNA1D Õ **PRNA3D** PRNA10D _ PRNA20D PRN30D

O: Standard △: Custom-made

Model Nos. of mounting hardware

Applicable HI-ROTOR	Flange plate	Foot plate				
PRNA1S/D	PRN1-P	PRN1-L				
PRNA3S/D	PRN3-P	PRN3-L				
PRNA10S/D	PRN10-P	PRN10-L				
PRNA20S/D	PRN20-P	PRN20-L				
PRN30S/D	PRN30-P	PRN30-L				
(Note) These hardware are provided with set screws.						

13

SPECIFICATIONS

Model No.	Unit	PRNA1S			P	RNA3	S PRNA10S			PRNA20S)S	PRN30S				
Vane			Single vane														
Fluid						1	lon-lu	bricate	ed air (L	ubrica	ited air))					
Oscillating angle	Degree	90 ⁺⁴ ₀	180+4	270 +4	90 ⁺⁴ ₀	180+4	270 +4	90^{+4}_{0}	180+4	270 +4	90 ⁺⁴ ₀	180+4	270 +4	90+3	180+3	270 ⁺³	
Oscillating reference point	Degree	45	,90	45	45,	90	45	45	,90	45	45,	,90	45		45		
Port size							Μ	15							Rc1/8		
Minimum working pressure	MPa					0.1						0.08			0.1		
Operation pressure range	MPa				0	.2~0.1	7						0.2	~1			
Proof withstanding pressure	MPa					1.05							1	.5			
Temperature range	°C						-54	~80						-	-5~6	0	
Maximum frequency of use	Hz	5	3	1.6	4	2.5	1	4	2.5	1.5	3.5	2	1	3	1.5	1	
Internal volume	cm ³	1.4	1.4	1.5	3.4	3.4	4	9.8	9.8	12	17	17	21	37	37	43	
Allowable radial load	N		30			40			50			300			400		
Allowable thrust load	Ν		3		4 4				25			30					
Allowable energy	mJ		0.6		1.5 0		3		15		25						
Mass	kg		0.036		0.07			0.14			0.25		0.47 0.46		0.46		
Model No.	Unit	P	RNA1	D	Р	RNA3I	C	Р	RNA10	D	PRNA20D			PRN30D			
Vane								Do	uble va	ane							
Fluid						1	Von-lu	bricate	ed air (L	ubrica	ited air))					
Oscillating angle	Degree		$90\substack{+4\\0}$		90 ⁺⁴ ₀ 90			$90^{\scriptscriptstyle +4}_{\scriptscriptstyle \ 0}$		90+4			90+3				
Oscillating reference point	Degree		45		45 45			45			45						
Port size		 M5							Rc1/s								
							IV	0								0.08	
Minimum working pressure	MPa		0.08				0.0	-				0.06			0.08		
Minimum working pressure Operation pressure range	MPa MPa		0.08		0	.2~0.	0.0	-				0.06	0.2	~1	0.08		
	-		0.08		0	.2~0. ⁻ 1.05	0.0	-				0.06		∼1 .5	0.08		
Operation pressure range	MPa		0.08		0		0.0 7	-				0.06		.5	0.08	0	
Operation pressure range Proof withstanding pressure	MPa MPa		0.08		0		0.0 7	07	4			0.06		.5		0	
Operation pressure range Proof withstanding pressure Temperature range	MPa MPa °C				0	1.05	0.0 7	07	4 8.1					.5	-5~6	0	
Operation pressure range Proof withstanding pressure Temperature range Maximum frequency of use	MPa MPa °C Hz		5		0	1.05	0.0 7	07				3		.5	-5~6 3	0	
Operation pressure range Proof withstanding pressure Temperature range Maximum frequency of use Internal volume	MPa MPa °C Hz cm ³		5		0	1.05 4 2.8	0.0 7	07	8.1			3 15		.5	-5~6 3 34	0	
Operation pressure range Proof withstanding pressure Temperature range Maximum frequency of use Internal volume Allowable radial load	MPa MPa °C Hz cm ³ N		5 1.1 30		0	1.05 4 2.8 40	0.0 7	07	8.1 50			3 15 300		.5	-5~6 3 34 400	0	

(Note) • Maximum frequency of use at the supply pressure of 0.5 MPa (Unloaded).

•Make sure to use the HI-ROTOR within allowable energy. Refer to page 68 for the allowable energy calculation.

•HI-ROTORs with keyways are provided with keys.

•For HI-ROTORs other than standard, consult KURODA.

Output (Effective torque)

Model No.		Supply pressure (MPa)									
		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
	PRNA1S	4.9	7.6	10.1	12.9	15.6	18.5	_	—	_	
	PRNA3S	10	17	24	31	38	45	—	—	—	
Single vane	PRNA10S	35	56	75	98	120	139	—	_	—	
	PRNA20S	59	95	133	170	210	249	287	326	368	
	PRN30S	110	180	250	319	410	480	580	650	720	
	PRNA1D	10.4	16.5	22.5	28.6	34.7	41.1		—	—	
	PRNA3D	25	39	54	71	86	101	_	—	—	
Double vane	PRNA10D	76	117	162	211	254	303	_	—	_	
-	PRNA20D	140	222	306	388	470	553	633	717	807	
	PRN30D	270	440	600	770	950	1120	1299	1480	1660	

KURODA

(Unit : N·cm)

OSCILLATING TIME RANGE

Model No.	Oscillating angle						
Model No.	90°	180°	270°				
PRNA1S, 1D	0.03~0.6	0.06~1.2	0.09~1.8				
PRNA3S, 3D	0.04~0.8	0.08~1.6	0.12~2.4				
PRNA10S, 10D	0.045~0.9	0.09~1.8	0.135~2.7				
PRNA20S, 20D	0.05~1.0	0.1~2.0	0.15~3.0				
PRN30S, 30D	0.07~0.7	0.14~1.4	0.21~2.1				

(Note) Operate the HI-ROTOR within the oscillating time range prescribed in the above table. Otherwise, the HI-ROTOR will be perform in stick-slip motions.

HI-ROTOR with switch/For details, see pages 52 to 54.

CT AND SR TYPE PROXIMITY SWITCHES

Type of switch	Mounting	Load voltage (V)	Load current (mA)	Indicating lamp (Lights up at ON)	Applications
CT-3 CT-3U CTP-3	Switch position adjustable	DC5~30	5~200		Relay PLC
SR SU	Switch position fixed	DC5~30	5~200	0	IC circuit

(Note) CTP-3 is made-to-order

STRUCTURE

(Unit : s)

MAIN COMPONENTS

No.	Description	Material					
INO.	Description	PRN30S	PRNA1S, PRNA3S, PRNA10S, PRNA20S				
1	Body A	Aluminium alloy					
2	Body B	Aluminium alloy					
3	Vane shaft	Steel+Resin+Nitrile rubber	Steel+Resin+Hydrogenated nitrile rubber				
4	Shoe		Resin				
5	Shoe seal	Nitrile rubber	Hydrogenated nitrile rubber				
6	Bushing		_				
\bigcirc	O-ring	Nitrile rubber Hydrogenated nitrile rub					
1	Set screw	Steel					

MODEL Nos. OF PACKING KIT

Applicable HI-ROTOR	Model No.	
PRNA1S	PRNA1S-PS	
PRNA3S, PROA3S	PRNA3S-PS	
PRNA10S, PROA10S	PRNA10S-PS	
PRHA10S	PRINA 103-P3	
PRNA20S, PROA20S	PRNA20S-PS	
PRHA20S	FNNA203-F3	
PRN30S, PRO30S	PBN30S-PS	
PRH30S	PRIN303-P3	
	1.1. 6. 1.51	

(Note) A set of packings consists of part Nos. (3), (5) and (7).

15

MAIN COMPONENTS

No.	Description	Material			
INO.	Description	PRNA1D, PRNA3D, PRNA10D, PRNA20D	PRN30D		
1	Body A	Aluminium all	оу		
2	Body B	Aluminium alloy			
3	Vane shaft	Steel+Resin+Hydrogenated nitrile rubber	Steel+Resin+Nitrile rubber		
4	Shoe	Resin			
5	Shoe seal	Hydrogenated nitrile rubber	Nitrile rubber		
6	Bushing	-			
\bigcirc	O-ring	Hydrogenated nitrile rubber	Nitrile rubber		
8	O-ring	Hydrogenated nitrile rubber	Nitrile rubber		
9	O-ring	Hydrogenated nitrile rubber (PRNA20D only)	_		
10	Plate	Steel	—		
\mathbb{O}	Set screw	Steel			

MODEL Nos. OF PACKING KIT

Applicable HI-ROTOR	Model No.
PRNA1D	PRNA1D-PS
PRNA3D, PROA3D	PRN3D-PS
PRNA10D, PROA10D	PRNA10D-PS
PRHA10D	PRIVATUD-P3
PRNA20D, PROA20D	PRNA20D-PS
PRHA20D	PRIVAZUD-PS
PRN30D, PRO30D	PBN30D-PS
PRH30D	PRINSUD-PS
(Nate) A pat of pool/ingo o	opointe of part Noo

(Note) A set of packings consists of part Nos. (3), (5) and (7).

17

KURODA

18

19

KURODA

20

21

Miniature HI-ROTOR / Variable oscillating angle type Useries 3S, 10S, 20S, 30S, 3D, 10D, 20D, 30D

OSCILLATION STARTING POINT AND OSCILLATION ANGLE

ORDERING INSTRUCTIONS PROA20S 90 Ρ 0 FR 3 (4) Í Model No. Single vane Double vane **PROA3S** PROA3D PROA10S PROA10D PROA20S PROA20D PRO30S PRO30D ①Oscillating angle Type of switch units Angle setting No mark No switch 0 not specified FR With CT-3 switch Desired Angle setting Switch position FU With CT-3U switch angle* specified adiustable FP With CTP-3 switch *Custom-made (Note) • Two switches are provided. 2 Oscillating reference point •FP is made-to-order 90 90 6 Option (PROA3S, 10S, 20S) No mark Without protective cover 45° (PROA3D,10D,20D With protective cover Κ 45 (Note) For HI-ROTORs with switches, the (PRO30S/D) protective cover cannot be mounted. ③Mounting hardware No mark | No mounting hardware With flange plate Ρ 11 With one foot plate (Note) • HI-ROTORs of which the angle setting is not specified are shipped

- with fixed the reference point stopper but not the angle setting stopper when delivered. Be sure to attach the accompanying angle setting stopper without fail before use.
 - •HI-ROTORs of which angle setting is specified (made-to-order) will be delivered with angle setting stopper attached to the approximate position. Be sure to adjust the stopper position with the fine adjust screw before use.
 - •HI-ROTORs with a switch unit will be delivered together with the switch unit in the package. Assemble them after adjusting the external stopper. For the method of assembly, see Page 54.
 - ·Mounting hardwares are not fabricated to the HI-ROTOR when delivered but are included in the package.

Model Nos. of protective cover Model Nos. of stopper unit el No. App

plicable HI-ROTOR	Model No.	Applicable HI-ROTOR	Model No.
PROA3S/D	RO3-U	PROA3S/D	PRO3-K
PROA10S/D	RO10-U	PROA10S/D	PRO10-K
PROA20S/D	RO20-U	PROA20S/D	PRO20-K
PRO30S/D	RO30-U	PRO30S/D	PRO30-K
ata) Ear dataila	200 0000 26		

(Note) For details, see page 26.

Model Nos. of mounting hardware

Applicable HI-ROTOR	Flange plate	Foot plate			
PROA3S/D	PRN3-P	PRN3-L			
PROA10S/D	PRN10-P	PRN10-L			
PROA20S/D	PRN20-P	PRN20-L			
PRO30S/D	PRN30-P	PRN30-L			
(Note) These hardware are provided with set screws.					

KURODA

(Unit : N·cm)

Miniature HI-ROTOR/PRO series

SPECIFICATIONS

Model No.							
WOUEI NO.	Unit	PROA3S	PROA10S	PROA20S	PRO30S		
Vane			Single	vane			
Fluid			Non-lubricated air (Lubricated air)				
Oscillating angle	Degree		30~180		30~270		
Oscillating reference point	Degree		90 45				
Port size			M5		Rc1/s		
Minimum working pressure	MPa		0.	1			
Operation pressure range	MPa	0.2	~0.7	0.2~	~1		
Proof withstanding pressure	MPa	1	.05	1.	5		
Temperature range	Ĵ		-5~80		-5~60		
Maximum frequency of use	Hz	3 (at 180°)	2.5 (at 180°)	2 (at 180°)	1 (at 270°)		
Internal volume	CM ³	4	12	21	43		
Allowable radial load	N	40	50	300	400		
Allowable thrust load	N	4	4	25	30		
Allowable energy	mJ	1	2	3	7		
Mass	kg	0.085	0.17	0.28	0.51		
Model No.	Unit	PROA3D	PROA10D	PROA20D	PRO30D		
Vane		Double vane					
			Non-lubricated a	ir (Lubricated air)			
Fluid	Degree		Non-lubricated a	. ,			
Fluid Oscillating angle	Degree Degree			~90			
Fluid	0		30~	~90	Rc1⁄a		
Fluid Oscillating angle Oscillating reference point Port size	0	0	30~ 4	~90			
Fluid Oscillating angle Oscillating reference point Port size Minimum working pressure	Degree		30~ 4 M5	-90 5	18		
Fluid Oscillating angle Oscillating reference point	Degree MPa	0.2	30~ 4 M5 .07	-90 5 0.0	08 ~1		
Fluid Oscillating angle Oscillating reference point Port size Minimum working pressure Operation pressure range	Degree MPa MPa	0.2	30~ 4 M5 .07 ~0.7	-90 5 0.0 0.2	08 ~1		
Fluid Oscillating angle Oscillating reference point Port size Minimum working pressure Operation pressure range Proof withstanding pressure	Degree MPa MPa MPa	0.2	30~ 4 M5 .07 ~0.7 .05	-90 5 0.0 0.2	18 ~1 5		
Fluid Oscillating angle Oscillating reference point Port size Minimum working pressure Operation pressure range Proof withstanding pressure Temperature range Maximum frequency of use	Degree MPa MPa MPa Č	0.2	30~ 4 M5 .07 ~0.7 .05 −5~80	-90 5 0.0 0.2- 1.4	-1 5 −5~60		
Fluid Oscillating angle Oscillating reference point Port size Minimum working pressure Operation pressure range Proof withstanding pressure Temperature range	Degree MPa MPa MPa °C Hz	0.2 1 4 (at 90°)	30~ 4 M5 .07 ~0.7 .05 −5~80 4 (at 90°)	-90 5 0.0 0.2- 1.1 3 (at 90°)	-1 $-5 \sim 60$ $3 (at 90^{\circ})$		
Fluid Oscillating angle Oscillating reference point Port size Minimum working pressure Operation pressure range Proof withstanding pressure Temperature range Maximum frequency of use Internal volume	Degree MPa MPa MPa °C Hz cm ³	0.2 1 4 (at 90°) 2.8	30~ 4 M5 .07 ~0.7 .05 −5~80 4 (at 90°) 8.1	-90 5 0.0 0.2- 1.4 3 (at 90°) 15	8 ∼1 5 −5~60 3 (at 90') 34		
Fluid Oscillating angle Oscillating reference point Port size Minimum working pressure Operation pressure range Proof withstanding pressure Temperature range Maximum frequency of use Internal volume Allowable radial load	Degree MPa MPa °C Hz cm ³ N	0.2 1 4 (at 90°) 2.8 40	30~ 4 M5 .07 ~0.7 .05 −5~80 4 (at 90°) 8.1 50	-90 5 0.2- 0.2- 1.1 3 (at 90°) 15 300	-5 $-5 \sim 60$ $3 (at 90^{\circ})$ -34 400		

(Note) • The allowable energy differs from that of the PRN series.

•Maximum frequency of use at the supply pressure of 0.5MPa (Unloaded).

•Make sure to use the HI-ROTOR within allowable energy. Refer to page 68 for the allowable energy calculation.

•HI-ROTORs with keyways are provided with keys.

•For HI-ROTORs other than standard, consult KURODA.

Output (Effective torque)

Model No.		Supply pressure (MPa)								
IVIOGE	el NO.	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	PROA3S	10	17	24	31	38	45	—	_	_
Single vane	PROA10S	35	56	75	98	120	139	—	_	_
U	PROA20S	59	95	133	170	210	249	287	326	368
	PRO30S	110	180	250	319	410	480	580	650	720
	PROA3D	25	39	54	71	86	101	—	—	—
	PROA10D	76	117	162	211	254	303	_	_	_
Double vane	PROA20D	140	222	306	388	470	553	633	717	807
	PRO30D	270	440	600	770	950	1120	1299	1480	1660

23

EXTERNAL STOPPER SPECIFICATIONS (Unit : Degree)								
Model No.	PROA3S	PROA10S	PROA20S	PRO30S	PROA3D	PROA10D	PROA20D	PRO30D
Minimum angel setting		30						
Maximum angle setting		180		270		9	0	
Pitch for angle setting		15						
Angle fine adjustment range				-9~	~+6			
Oscillating reference poit fine adjust range		<u>+</u>	:3		-1~+3		±3	
Fine adjust range at maximum angle setting		-9~+6		-9~+3	-9~+1		-9~+3	

OSCILLATING ANGLE SETTING RANGE AND REFERENCE POINT

Mode	Model No.		Oscillating reference point	
	PROA3S			
Single vane	PROA10S	30~180°	90°	
Single valle	PROA20S			
	PRO30S	30~270°	45°	
	PROA3D			
Double vane	PROA10D	30~90°	45°	
Double valle	PROA20D		40	
	PRO30D			

HI-ROTOR with switch/For details, see pages 53.

CT TYPE PROXIMITY SWITCHES

Type of switch	Mounting	Load voltage (V)	Load current (mA)	Indicating lamp (Lights up at ON)	Applications
CT-3 CT-3U CTP-3	Switch position adjustable	DC5~30	5~200	0	Relay PLC IC circuit

(Note) CTP-3 is made-to-order

hymatik

Miniature HI-ROTOR/PRO series

OSCILLATING TIME RANGE

STRUCTURE

PROA3D, PROA10D, PROA20D, PRO30D

MAIN COMPONENTS

No.	Description	Material		
INO.	Description	PROA3, PROA10, PROA20	PRO30	
1	Body A	Aluminium all	оу	
2	Body B	Aluminium all	оу	
3	Vane shaft	Steel+Resin+Hydrogenated nitrile rubber	Steel+Resin+Nitrile rubber	
4	Shoe	Resin		
(5)	Shoe seal	Hydrogenated nitrile rubber	Nitrile rubber	
6	Bushing			
\bigcirc	O-ring	Hydrogenated nitrile rubber	Nitrile rubber	
8	Set screw	Steel		
9	Claw	Steel		
10	Stopper L	Steel		
1	Stopper R	Steel		
12	Claw set screw	Steel		
13	Stopper set screw	Steel		
14)	Fine-adjust screw	Steel		
(15)	Locknut	Steel		

COMPONENTS OF STOPPER UNIT

A stopper unit consists of (9), (10, (11), (12), (13), (14) and (15) shown in the above list.

MODEL Nos. OF PACKING KIT

Same as those for standard type HI-ROTOR (PRN series), See page 15 to 16.

27

29

KURODA

30

INDIVIDUAL INSTRUCTIONS

Be sure to read them before use.

 $^{ar{}}$ Also refer to Par. "For Safety Use" and common instructions.

SETTING ANGLE

- Be sure to attach the reference point stopper and angle setting stopper before starting the HI-ROTOR.
- When setting the stoppers at the oscillation reference point and at the maximum oscillating angle, be careful not to set them outside the adjustable range. Otherwise, the vane will run against the internal stopper and damage it. Be sure to adjust the angle so that the claw will stop when it touches the external stopper.
- The reference point stopper is fixed and immovable.
- The oscillation angle is determined by the claw when it hits the fine adjust screw of each stopper. The accuracy of the stop angle dose not take into consideration wear from operation. When the oscillation angle has changed to wear, readjust it with the fine adjust screw.

STRUCTURE OF VARIABLE OSCILLATING ANGLE MECHANISM

Attach external stoppers to the tapped hole provid on the HI-ROTOR body. Two types of stoppers are provided: a reference point stopper and an angle setting stopper. The reference point stopper has been attached to the fixed position (oscillating reference point). On the other hand, the angle setting stopper is attached to a position where the desired angle can be set. The HI-ROTOR stops when the claw fitted to the shaft run against the stopper. Fine adjustment of the angle can be accomplished with the adjust screw on the stopper.

SETTING THE OSCILLATING ANGLE

• HI-ROTORs of which the angle setting is not specified (Standard)

For these HI-ROTORs, only the reference point stopper has been fixed and the angle setting stopper is shipped with the HI-ROTOR when delivered. Therefore, you are required to attach the angle setting stopper to the position for the desired angle setting. The angle setting stopper can be attached at intervals of 15°. For setting procedures, refer to "How to set the oscillating angle" (Page 20).

• HI-ROTORs of which the angle setting is specified (Made-to-order)

These HI-ROTORs are delivered with the reference point stopper and angle setting stopper fixed at the specified angle. However, you are required to adjust the fine adjust screws provided on each stopper to set the exact angle.

31

Be sure to read them before use.

 $^{ar{}}$ Also refer to Par. "For Safety Use" and common instructions.

HOW TO SET THE OSCILLATING ANGLE

- When the angle setting equals the stopper mounting pitch (15°)
- ①Place the stopper into the tapped hole corresponding to the intended angle and fix it. When mounting the stopper, use the angle setting marks provided, at an interval of 30°, near the tapped hole.

Angle setting	
Model No.	Angle setting (at 15° intervals)
PROA3S/D	
PROA10S/D	30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150°, 165°, 180°
PROA20S/D	165, 180
PRO30S/D	30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150°,
FR0303/D	30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150°, 165°, 180°, 195°, 210°, 225°, 240°, 255°, 270°

②Then, rotate the fine adjust screws on the reference point stopper and angle setting stoppers until the correct angle is obtained. After completing the angle setting, tighten the locknut without fail.

Angle fine adjust range

Reference point stopper fine adjust range	*±3°
Angle setting stopper fine adjust range	$-9^{\circ} \sim +6^{\circ}$
Angle setting stopper fine adjust range for maximum angle setting	**-9°~+3°

(Note) *PROA3D: -1° to +3° **PROA3D: -9° to +1°

HOW TO SET THE OSCILLATING ANGLE

- When the angle setting lies between two 15° stops:
- (1)When the desired angle lies between two 15° stops, fix the stopper into the tapped hole with the arrow as shown in the Fig. below and fix it.

When the desired angle lies in the 6° portion on this side (viewing from the reference point) between the stops, insert the stopper so its reference side comes into contact with the set screw on this side. When the intended angle lies in the remaining 9° portion between stops, attach the stopper so that its reference side comes into contact with the set screw on the other side (viewing from the reference point).

hymatik

②Then, rotate the fine adjust screw fitted to the stopper to obtain the correct angle. After completing the angle setting, tighten the locknut without fail.

HI-ROTOR/Standard type **PRNseries** 505, 1505, 3005, 8005/50D, 150D, 300D, 800D

OSCILLATING REFERENCE POINT AND OSCILLATING ANGLE

ORDERING INSTRUCTIONS

Model Nos. of mounting hardware

	0				
Applicable HI-ROTOR	Flange plate	Foot plate			
PRN50	PRN50-P	PRN50-L			
PRN150	PRN150-P	PRN150-L			
PRN300	_	PRN300-L			
PRN800	—	PRN800-L			
(Note) These hardware are provided with set screws.					

33

HI-ROTOR/PRN series

SPECIFICATIONS

Model No.	Unit	PRN50S			PRN150S			PRN300S						
Vane			Single vane											
Fluid						Non-lubi	ricated a	ir (Lubric	cated air))				
Oscillating angle	Degree	90 ⁺³	180 *3	270 °3	280 * 3	90 ⁺³	180 *3	270 *3	280 *3	90 °3	180 *3	270 *3	280 * 3	
Oscillating reference pointt	Degree	45	45	45	40	45	45	45	40	45	45	45	40	
Port size			R	c ¹ /			R	c ¹ /			Rc³/			
Minimum working pressure	MPa		0	.1			0.	08		0.08				
Operation pressure range	MPa		0.2 ~ 1											
Proof withstanding pressure	MPa	1.5												
Temperature range		5 ~ 60												
Maximum frequency of use	Hz	3	3 1.5 1 2 1.3 0.8		8	1.5	1	0.	7					
Internal volume	CM 3	51	51	61	62	146	146	179	185	244	283	352	365	
Allowable radial load	Ν		588 1176				1960							
Allowable thrust load	N		44.1 88.2			147								
Allowable energy	mJ	49			225.4			1078						
Mass	kg	0.82	0.79	0.73	0.7	2.0	1.9	1.7	1.6	3.7	3.7	3.7	3.6	
Model No.	Unit	PRN800S			PRN50D PRN150D		PRN300D PRN		800D					
Vane			Single	e vane					Double	e vane				
Fluid		Non-lubricated air (Lubricated air)												
		00.43	100.13	070 13	000 +3	00.13	400 53	00.13	100 13	00.13	100 -3	00.13	400 -	

Fluid		Non-lubricated air (Lubricated air)											
Oscillating angle	Degree	90 *3	180 *3	270 °0	280 °0	90 °3	100 *3	90 *3	100 *3	90 °3	100 *3	90 *3	100 *3
Oscillating reference point	Degree	45	45	45	40	45	40	45	40	45	40	45	40
Port size		Rc ¹ /				Rc ¹ / Rc ¹ /		¹ /	Rc ³ /		Rc ¹ /		
Minimum working pressure	MPa		0.05 0.08 0.06				0.06		0.05				
Operation pressure range	MPa	0.2 ~ 1											
Proof withstanding pressure	MPa	1.5											
Temperature range		5 ~ 60											
Maximum frequency of use	Hz	1.1 0.75 0.5			3 2		1.5		1.1				
Internal volume	CM 3	754	869	1036	1046	42	43	127	123	244	271	754	774
Allowable radial load	N		4900 588 1176 196					60	4900				
Allowable thrust load	N	490			44.1		88.2		147		490		
Allowable energy	mJ	3920			49		225.4		1078		3920		
Mass		1		1									

(Note) · Maximum frequency of use at the supply pressure of 0.5 MPa (Unloaded).

• Make sure to use the HI-ROTOR within allowable energy. Refer to page 68 for the allowable energy calculation.

·HI-ROTORs with keyways are provided with keys.

· For HI-ROTORs other than standard, consult KURODA.

Output (Effective torque)

• •	. ,										
Model No.	Supply pressure (MPa)										
Model No.	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		
PRN50S	125	259	369	479	590	700	829	950	1060		
PRN50D	330	579	829	1040	1280	1510	1760	2010	2250		
PRN150S	550	850	1150	1500	1800	2100	2400	2730	3050		
PRN150D	1250	1900	2700	3500	4150	4800	5500	6200	6900		
PRN300S	1050	1650	2250	2850	3450	4050	4600	5180	5750		
PRN300D	2550	3900	5400	6800	8300	9700	11000	12400	13700		
PRN800S	3780	5910	8100	10200	12300	14400	16600	18600	20500		
PRN800D	7740	12000	16100	20600	24700	28800	33200	37100	41100		

KURODA

(Unit : N·cm)

HI-ROTOR/PRN series

OSCILLATING TIME RANGE

Oscillating angle Model No. 90° 100[°] 180[°] 270[°] 280[°] 0.24 ~2.4 0.25 ~2.5 PRN50 0.08 ~0.8 0.09 ~0.9 0.16 ~1.6 PRN150 0.12 ~1.2 0.13 ~1.3 0.24 ~2.4 0.36 ~3.6 0.37 ~3.7 PRN300 0.16 ~1.6 0.17 ~1.7 0.32 ~3.2 0.48 ~4.8 0.49 ~4.9 PRN800 0.22 ~2.2 0.24 ~2.4 0.44 ~4.4 0.66 ~6.6 0.68 ~6.8

(Note) Use HI-ROTORs within the range of the oscillating time range shouwn in the above table. Otherwise, the HI-ROTOR will tend to occur in a stick-slip motion.

When it is necessary to operate a HI-ROTOR at a low speed which is outside the abovementioned range, use of a air-hydro HI-ROTOR (see page 40) is recommended.

HI-ROTOR with switch /For details, see pages 55.

M TYPE REED SWITCHES

Lead wire type

Type of switch	Load voltage (V)	Load current (mA)	Indicating lamp (Lights up at ON)	Applications
MA-1	AC100	5~45	_	Relay
MA-1	DC24	5~45	0	PLC
MD-1	DC24	25 ~ 65	0	Relay
MD-3	DC5, 6	50 or less (Inductive load) 300 or less (Resistance load)	0	IC circuit
MR	AC 5~10 DC	50 or less (Inductive load) 300 or less (Resistance load)	Not provided	Relay

M TYPE PROXIMITY SWITCH

(Unit : s)

Lead wire type

Type of switch	Load voltage (V)	Load current (mA)	Indicating lamp (Lights up at ON)	Applications
MT-2 MT-2U	DC24 (DC10~30)	5~100	0	Relay PLC
MT-3 MT-3U MTP-3	DC5~30	5~200	0	Relay PLC IC circuit

(Note) MTP-3 is made-to-order

STRUCTURE PRN50S, 150S, 300S

PRN50D, 150D, 300D

PRN800S

PRN800D

MAIN COMPONENTS

No.	Description	Material
	Body A	50, 150 : Aluminum alloy die casting
	Body B	300 : Aluminum alloy casting
	Vane shaft	Structural alloy steel
	Vane seal	Nitrile rubber
	Shoe	Zinc alloy die casting
	Shoe seal	Nitrile rubber
	Damper	Urethane rubber
	Bearing	_
	O-ring	Nitrile rubber
	O-ring	Nitrile rubber

(Note) The vane seal and vane shaft are united in one piece.

MODEL Nos. OF PACKING KIT

Applicable HI-ROTOR	Model No.
PRN50S, PRH50S, PRF50S	PRN50S-PS
PRN50D, PRH50D, PRF50D	PRN50D-PS
PRN150S, PRH150S, PRF150S	PRN150S-PS
PRN150D, PRH150D, PRF150D	PRN150D-PS
PRN300S, PRH300S, PRF300S	PRN300S-PS
PRN300D, PRH300D, PRF300D	PRN300D-PS
(Noto) A set of packings consists of	Foort Nos

(Note) A set of packings consists of part Nos. , , and

PRN800

No.	Description	Material
	Body A	Aluminum alloy casting
	Body B	Aluminum alloy casting
	Vane shaft	Structural alloy steel
	Vane seal	Nitrile rubber
	Shoe	Zinc alloy die casting
	Shoe seal	Nitrile rubber
	Damper	Urethane rubber
	Bearing	Bearing steel
	O-ring	Nitrile rubber
	O-ring	Nitrile rubber
	Cover plate	Structural carbon steel
(A. J.).).		

(Note) The vane seal and vane shaft are united in one piece.

MODEL Nos. OF PACKING KIT

Applicable HI-ROTOR	Model No.						
PRN800S, PRH800S, PRF800S	PRN800S-PS						
PRN800D, PRH800D, PRF800D	PRN800D-PS						
(Note) A set of packings consists of part Nos.							

and

37

KURODA

38

DIMENSIONS

(Note) • Refer on page 37 for the dimensions on basic type HI-ROTOR.

•For switch unit-mounting hardware or hydro-cushion combinations, refer to the required dimensions in each Fig.

HI-ROTORs of this series are exclusively used for air-hydro systems and are suitable for operation at low speed.

HI-ROTORs of this series are exclusively ORDERING INSTRUCTIONS

①Oscillating angle, ②Oscillating reference point, ③Mounting head ware, ④Option, ⑤Type of switch, ⑥Number of switches are same as those of the Standard Type PRN series (see Page 33).

SPECIFICATIONS

•••=•••••••••••		
Fluid	Unit	Hydraulic oil
Operation pressure range	MPa	0.2~1
Proof withstanding pressure	MPa	1.5
Temperature range	°C	5~60

(Note) •Other specifications are the same as for Standard type PRN series. (see Page 34)
•Use turbine oil Class 1 (ISO VG32) or hydraulic fluid having tha equivalent viscosity. Note that some noncombustible hydraulic fluid are not suitable.

HOW TO USE

MINIMUM OSCILLATING TIME

Single vane (Unit :s)							
Madal Na	Oscillating angle						
Model No.	90°	180°	270°	280°			
PRF50S	0.3	0.5	0.7	0.7			
PRF150S	0.4	0.7	0.9	1.0			
PRF300S	0.4	0.7	1.0	1.0			
PRF800S	0.7	1.3	1.8	1.8			

Double var	Jnit : s)			
Model No.	Oscillating angle			
wodel No.	90°	100°		
PRF50D	0.6	0.7		
PRF150D	1.3	1.4		
PRF300D	1.9	2.1		
PRF800D	2.4	2.6		

(Note) Dimansions are the same as for standard type PRN series. See Page 37.

Miniature HI-PAL HI-ROTOR/With solenoid valeve **PRHSERIES** 10S, 20S, 30S, 10D, 20D, 30D

OSCILLATING REFERENCE POINT AND OSCILLATING ANGLE

41

ORDERING INSTRUCTIONS

	IA20S – 90 del No. 1	- 90 - 2	- P - FR -(3 4	D24 L 5 6
Single V PRHA10 PRHA20 PRH303	DS PRHA10 DS PRHA20			
①Oscilla	ating angle	(4)Type (of switch units	
90	90°	No mark	No switch	
180	180°	FR	With CT-3 switch	Switch position
270	270°	FU	With CT-3U switch	adjucstable
2 Oscillating reference point		FP	With CTP-3 switch	aujucsiable
90	90°	SR	With SR switch	Switch position
45	45°	SU	With SU switch	fixed
	No mounting hardware No mounting hardware With flange plate With one foot plate With two foot plates	• { • F ⑤Solen D24 100 200 ⑥Solen L Le	P is made-to-order oid valve voltage DC24V AC100/110V AC200/220V oid valve wiring spe ad wire	ble for PRHA10S-270-4(
			g-in connector with indicato g-in connector with indicato	

hymatik

(Note) • Switch units cannot be mounted on HI-ROTORs with two foot plates (L2).
• Mounting hardware comes being not fabricated.

Oscillating angle and oscillating reference point

Model No.	09	scillating and	Oscillating reference point		
MOUELINO.	90°	180°	270°	45°	90°
PRHA10S	0	0	0	0	_
PRHATUS	\bigtriangleup	\bigtriangleup	—	_	\bigtriangleup
	0	0	0	0	—
PRHA20S	\triangle	\bigtriangleup	_	-	\bigtriangleup
PRH30S	0	0	0	0	—
PRHA10D	0	_	_	0	_
PRHA20D	0	—	—	0	_
PRH30D	0	—	—	0	—
Or Standard A.C	untona mand			1	· · · · · · · · · · · · · · · · · · ·

○: Standard △: Custom-made

Model Nos. of mounting hardware

Applicable HI-ROTOR	Flange plate	Foot plate
PRHA10S/D	PRN10-P	PRN10-L
PRHA20S/D	PRN20-P	PRN20-L
PRH30S/D	PRN30-P	PRN30-L

(Note) These hardware are provided with set screws.

Model Nos. of packing kit

Same as those for standard type HI-ROTOR (PRN series). See Page 15.

SPECIFICATIONS

Model No.	Unit	F	PRHA10	s	PRHA20S			PRH30S			PRHA10D	PRHA20D	PRH30D
Vane					S	ingle var	ne				D	ouble va	ne
Fluid			Non-lubricated air (Lubricated air)										
Oscillating angle	Degree	90 ⁺⁴ ₀	$90^{+4}_{-0} 180^{+4}_{-0} 270^{+4}_{-0} 90^{+4}_{-0} 180^{+4}_{-0} 270^{+4}_{-0} 90^{+3}_{-0} 180^{+3}_{-0} 270^{+3}_{-0}$				90 ⁺⁴		90 +3				
Oscillating reference point	Degree	45,	45, 90 45 45, 90 45 45					45					
Port size			M5 Rc1/s					M5	Ro	21/8			
Operation pressure range	MPa		0.2~0.7 0.2~0.8 0.1					0.2~0.7	0.2~	~0.8			
Temperature range	°C		-5~50										
Solenoid valve mounted		PCS245 (DC24, AC100/110V, AC200/220V)											
Mass	kg	0.	23	0.22		0.37		0.	58	0.57	0.23	0.38	0.59

(Note)Other specifications are the same as Standard type PRN series. See Page 14.

OUTPUT (Effective torque)

Model No.		Supply pressure (MPa)									
NOOR	ei no.	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
Single vane	PRHA10S	35	56	75	98	120	139	_			
	PRHA20S	59	95	133	170	210	249	287			
	PRH30S	110	180	250	319	410	480	580			
Double vane	PRHA10D	76	117	162	211	254	303	—			
	PRHA20D	140	222	306	388	470	553	633			
	PRH30D	270	440	600	770	950	1120	1299			

(Unit : s)

OSCILLATING TIME RANGE

Model No.	Supply pressure (MPa)					
	90°	180°	270°			
PRHA10S, 10D	0.045~0.9	0.09~1.8	0.135~2.7			
PRHA20S, 10D	0.05~1.0	0.1~2.0	0.15~3.0			
PRH30S, 30D	0.07~0.7	0.14~1.4	0.21~2.1			

(Note)Operate the HI-ROTOR within the oscillating time range prescribed in the above table. Otherwise, the HI-ROTOR will be perform in stick-slip motions.

SOLENOID VALVE

Ordering instructions for solenoid valves

PCS	245]-[NB)-	-100) SP

Without base 1 2 Model No.

①Solenoid valve voltage	②So	lenoid valve wiring specifications
D24 DC24V	L	Lead wire
100 AC100/110V	SP	Plug-in connector with indicator light & surge suppressor
200 AC200/220V	UP	Plug-in connector with indicator light & surge suppressor

The standard solenoid valve is a 2-position solenoid valve with single solenoid. For specific solenoid valves, consult KURODA.

Type of solenoid valve	Model
2-position solenoid valve with a double solenoid	PCD245
3-position solenoid valve with a double solenoid(Closed center)	PCD345
3-position solenoid valve with a double solenoid(Exhaust center)	PCE345
3-position solenoid valve with a double solenoid(Pressure center)	PCO345

SPEED CONTROL

Although HI-PAL HI-ROTORs are not provided with a speed control mechanism, the speed can be easily controlled with the metering valve or speed controller. For the metering valve and speed controller, please instruct.

(Unit : cm)

HI-PAL HI-ROTOR	PRHA10, 20, PRH30
Metering valve	MV-M5
Speed controller	SPF-H-M5, SPER-H-M5, SPSR-H-M5
Speed controller	MB4R-M5-O, M4R-M5-O
with push-in fitting	MB6R-M5-O, M6R-M5-O

HI-ROTOR with switch/For details, see pages 52 to 54.

CT AND SR TYPE PROXIMITY SWITCHES

Type of switch	Mounting	Load voltage (V)	Load current (mA)	Indicating lamp (Lights up at ON)	Applications
CT-3 CT-3U CTP-3	Switch position adjustable		F 000		Relay PLC IC circuit
SR SU	Switch position fixed	DC5~30	5~200	0	

(Note) CTP-3 is made-to-order

KURODA

hymatik

KURODA

45

HI-PAL HI-ROTOR/With solenoid valeve **PRHseries** 50S, 150S, 300S, 800S, 50D, 150D, 300D, 800D

OSCILLATING REFERENCE POINT AND OSCILLATING ANGLE

ORDERING INSTRUCTIONS

(Unit : N·cm)

(Unit :s)

HI-PAL HI-ROTOR/PRH series

SPECIFICATIONS

Model No.	Unit		PRH	150S			PRH	PRH150S			PRH300S		
Vane			Single vane										
Fluid			Non-lubricated air (Lubricated air)										
Oscillating angle	Degree	90 ⁺³	180 +3	270 +3	280 ⁺³ ₀	90 ⁺³	180^{+3}_{-0}	270 ⁺³	280 ⁺³ ₀	90 ⁺³	180 +3	270 ⁺³	280 +3
Oscillating reference pointt	Degree	45	45	45	40	45	45	45	40	45	45	45	40
Port size			Re	c ¹ /8			Ro	¹ /4		Ro	o³∕ଃ(Port	3, 5 : R	c1/4)
Operation pressure range	MPa						0.2 -	~0.8					
Temperature range	°C						5~	·50					
Solenoid valve voltage	V		DC24V, AC100/110V, AC200/220V										
Valve mounted		PCS245				PCS			2413				
Mass	kg	0.9	0.9	0.84	0.81	2.2	2.2	2.0	1.9	4.1	4.1	4.1	4.0
Model No.	Unit		PRH	800S		PRH	PRH50D PRH150D		PRH300D		PRH800D		
Vane			Single	e vane					Double	e vane			
Fluid						Non-lubi	ricated a	ir (Lubric	ated air))			
Oscillating angle	Degree	90 ⁺³ ₀	180 +3	270 +3	280 ⁺³ ₀	90 ⁺³ ₀	100 +3	90 ⁺³ ₀	100 +3	90 ⁺³ ₀	100 +3	90 ⁺³ ₀	100 +3
Oscillating reference pointt	Degree	45	45	45	40	45	40	45	40	45	40	45	40
Port size		Ro	¹/₂(Port	: 3, 5 : Ro	c ³ /8)	Ro	¹ /8	Ro	¹ / ₄		5 : Rc 1/4)		c ¹ /2 5 : Rc²/ə
Operation pressure range	MPa						0.2 -	~0.8					
Temperature range	°C						5~	-50					
Solenoid valve voltage	V				D	C24V, A	C100/11	0V, AC2	00/220V				
Valve mounted			PCS	2408		PCS245 PCS2			PCS2	2413 PC		PCS2	408
Mass	kg	13.2	12.7	11.7	11.5	0.93	0.91	2.3	2.2	4.7	4.5	13.2	13.0

(Note) Other specifications are the same as Standard type PRN series. See Page34.

OUTPUT (Effective torque)

Model No.		Supply pressure (MPa)								
Model No.	0.2	0.3	0.4	0.5	0.6	0.7	0.8			
PRH50S	125	259	369	479	590	700	829			
PRH50D	330	579	829	1040	1280	1510	1760			
PRH150S	550	850	1150	1500	1800	2100	2400			
PRH150D	1250	1900	2700	3500	4150	4800	5500			
PRH300S	1050	1650	2250	2850	3450	4050	4600			
PRH300D	2550	3900	5400	6800	8300	9700	11000			
PRH800S	3780	5910	8100	10200	12300	14400	16600			
PRH800D	7740	12000	16100	20600	24700	28800	33200			

OSCILLATING TIME RANGE

Model No.		Oscillating angle						
	90°	100°	180°	270 [°]	280°			
PRH50	0.08 ~0.8	0.09 ~0.9	0.16 ~1.6	0.24 ~2.4	0.25 ~2.5			
PRH150	0.12 ~1.2	0.13 ~1.3	0.24 ~2.4	0.36 ~3.6	0.37 ~3.7			
PRH300	0.16 ~1.6	0.17 ~1.7	0.32 ~3.2	0.48 ~4.8	0.49 ~4.9			
PRH800	0.22 ~2.2	0.24 ~2.4	0.44 ~4.4	0.66 ~6.6	0.68 ~6.8			

(Note) Operate the HI-ROTOR within the oscillating time range prescribed in the above table. Otherwise, the HI-ROTOR will be perform in stick-slip motions.

47

HI-PAL HI-ROTOR/PRH series

HI-PAL HI-ROTOR with switch

/For details, see pages 55.

M TYPE REED SWITCHES

Lead wire type

Type of switch	Load voltage (V)	Load current (mA)	Indicating lamp (Lights up at ON)	Applications
MA-1	AC100	5 ~ 45		Relay
IVIA-1	DC24	5 ~ 45		PLC
MD-1	DC24	25 ~ 65		Relay
MD-3	DC5, 6	50 or less (Inductive load) 300 or less (Resistance load)		IC circuit
MR	AC 5 ~ 100 DC	50 or less (Inductive load) 300 or less (Resistance load)	Not provided	Relay

M TYPE PROXIMITY SWITCH

Lead wire type

Type of switch	Load voltage (V)	Load current (mA)	Indicating lamp (Lights up at ON)	Applications
MT-2 MT-2U	DC24 (DC10 ~ 30)	5 ~ 100		Relay PLC
MT-3 MT-3U MTP-3	DC5 ~ 30	5 ~ 200		Relay PLC IC circuit

(Note) MTP-3 is made-to-order

SOLENOID VALVE

Ordering instructions for solenoid valves

PCS245	- NB - [100	
Model No.	Without base		

Volta	ge		Wi	iring specifications			
D24	DC24V	F	PRH	50, 150, 300	I	PR	H800
100	AC100/110V		L	Lead wire		L	Lead wire
200	AC200/220V		SP	Plug-in connector with indicator light & surge suppressor		G	Terminal grommet
			UP	Plug-in connector with indicator light & surge suppressor		С	Terminal conduit

The standard solenoid valve is a 2-position solenoid valve with single solenoid. For specific solenoid valves, consult KURODA.

SP

PRH50	PRH150, 300	PRH800
PCD245	PCD2413	PCD2408
PCD345	PCD3413	PCD3408
PCE345	PCE3413	PCE3408
PCO345	PCO3413	PCO3408
	PCD245 PCD345 PCE345	PCD245 PCD2413 PCD345 PCD3413 PCE345 PCE3413

For solenoid valve specifications, refer to the catalog of PC series.

SPEED CONTROL

Although HI-PAL HI-ROTORs are not provided with a speed control mechanism, the speed can be easily controlled with the metering valve or speed controller. For the metering valve and speed controller, please instruct.

HI-PAL HI-ROTOR	PR	H50	PRH1	50, 300	PF	RH800
Metering valve	M۱	/-M5	N	1V-1	Ν	//V-3
Speed controller	SPE	-H -M5	SPE	-2H-2	SP	E-10-3
	M4R-M5-O	MB4R-M5-O	M6R-01-O	MB6R-01-O	8R-03SC-O	B8R-03SC-O
Speed controller with push-in fitting	M6R-M5-O	MB6R-M5-O	6R-01SC-O	B6R-01SC-O	10R-03SC-O	B10R-03SC-O
	6R-M5SC-O	B6R-M5SC-O	8R-01SC-O	B8R-01SC-O	12R-03SC-0	B12R-03SC-O

HI-PAL HI-ROTOR/PRH series

DIMENSIONS

49

HI-PAL HI-ROTOR/PRH series

KURODA

50

DIMENSIONS

(Note) • Refer on page 49 for the dimensions on HI-ROTOR.

•For switch unit-mounting hardware or hydro-cushions, refer to the required dimensions in each Fig.

Compact switch unit with detecting position (angle) fixed. Use of a proximity switch extends the service life.

S	SR	20 - 180 - 90
(1	
1	Туре	e of switch
	SR	Axial direction of lead wire
	SU	Right-angled direction of lead wire
2	App	licable HI-ROTOR
	3	PRNA3S/D
	10	PRNA10S/D, PRHA10S/D
	20	PRNA20S/D. PRHA20S/D

PRN30S/D, PRH30S/D

30

ORDERING INSTRUCTIONS

(3 Oscillating angle						
	90	90°					
	180	180°					
	270	270°					

е	(a)Oscil	lating reference point
	90	90°
	45	45°

Applicable HI-ROTOR	0	scillatir angle	ng	Oscil referen	lating ce point
	90°	180°	270°	90°	45°
PRNA3S	0	0	0	—	0
PRINA35	0	0	_	0	_
PRNA10S	0	0	0	—	0
PRINATUS	0	0	-	0	-
PRNA20S	0	0	0	—	0
PRINA205	0	0	-	0	-
PRN30S	0	0	0	—	0
PRNA3D	0	—	-	—	0
PRNA10D	0	—	—	—	0
PRNA20D	0	_	_	_	Ó
PRN30D	0	-	-	-	0

SWITCH SPECIFICATIONS

Model No.		Unit	SR, SU		
Type of switch			Proximity		
Applications			Relay, PLC, IC circuit		
Load voltage		V	DC5~30		
Load current		mA	5~200		
Max nower consumption			max.20 (at 24V)		
Max. power consumption of switch control		mA	max.10 (at 12V)		
			max. 4 (at 5V)		
Max. leak current		μΑ	max.10		
Internal voltage dro	р	V	1.5 or less		
Mean response tim	е	ms	1		
Shock resistance		m/s ²	490		
Ambient temperatu	re	°C	5~60		
Protection grade			IP67		
Lead wire	Color		Oil resistance black 4-core cord		
Leau wire	Length	m	1		

HYSTERESIS AND RESPONSE RANGE OF SWITCHES

Type of HI-ROTOR	Response range	Hysteresis
PRNA3S/D, 10S/D, 20S/D		
PRN30S/D		Alexandre O°
PRHA10S/D, 20S/D	15°±7°	Approx. 2°
PRH30S/D		

(Note) That the response range in a direction will be reduced (that in the other direction will be extended) depeding on the mounting method of the switch unit rotor.

COMPONENTS

For Miniature HI-ROTORs Switch unit (Variable switch position type)

Using this switch unit together with HI-ROTORs of PRO series wil allow of flexible angle setting.

Switch	n units - 20PRN
	e of switch
FR	CT-3
FU	CT-3U
FP	CTP-3
(2)App	licable HI-ROTOR

ORDERING INSTRUCTIONS

(2)Applica	ble HI-ROTOR
1PRNA	PRNA1S/D
3PRNA	PRNA3S/D
10PRN	PRNA10S/D, PRHA10S/D
20PRN	PRNA20S/D, PRHA20S/D
30PRN	PRN30S/D, PRH30S/D
3PRO	PROA3S/D
10PRO	PROA10S/D
20PRO	PROA20S/D
30PRO	PRO30S/D

CT-	ies 3 F	2				
		•	Ŷ			
1	2	2)	3			
1)Type	of s\	wito	ch			
CT-3		N	IPN]	
CTP-3	3	F	νNΡ		1	
2)Swite R L	For	' rig	ht si	de		
3Wirir	ig sp	eci	ficati	ons		
3Wirir No m	<u> </u>				on	
3Wirir No m U	<u> </u>	Ax	ial di	rect	-	rectior

SWITCH DIMENSIONS

SWITCH SPECIFICATIONS

Model No.		Unit	CT-3	CTP-3	
Application	າຣ		Relay, PLO	C, IC circuit	
Type of sw	itch		Pro>	kimity	
Output me	thod		NPN	PNP	
Load volta	ge	V	DC5~30	DC10~30	
Load current		mA	5~200		
Max. powe	er		max.20 (at 24V)	max.14 (at 24V)	
consumption		mA	max.10 (at 12V)	max. 7 (at 12V)	
of switch c	ontrol		max. 4 (at 5V)	1	
Max. leak	current	μA	ma	nax.10	
Internal volt	age drop	V	1	.5	
Mean respo	nse time	ms		1	
Shock resi	stance	m/s ²	4	90	
Ambient ten	nperature	°C	5~	~60	
Protection	grade		IP67		
Lead wire	Color		Oil resistance b	lack 3-core cord	
Leau Wire	Length	m		1	

(Note) CTP-3 is made-to-order

HYSTERESIS AND RESPONSE RANGE OF SWITCHES

Model No.	Response range	Hysteresis
CT-3, CTP-3	23°±7°	Approx. 2°

53

INDIVIDUAL INSTRUCTIONS

Be sure to read them before use.

 $^{ar{ar{}}}$ Also refer to Par. "For Safety Use" and common instructions.

OSCILLATING ANGLE AND SWITCH MOUNTING ORIENTATION

• When ordering PRN or PRH series HI-ROTOR with switches, the following setting are done when shipping.

Oscillating angle	Orientation of switches		
90°、180°	А		
270°	В		

 When ordering adjustable oscillating type PRO series HI-ROTOR with switch unit, the unit will be shipped do not mounting. Mount the switches in accordance with the setting shown below and right after setting the angle stoppers at the desired angle and making final adjustment.

Oscillating angle	Orientation of switches
30°~186°	А
187°~270°	В

SETTING THE OSCILLATING ANGLE

Mounting the switch unit

Mount the switch unit on the HI-ROTOR body using the set screws on the switch case. For clamping torque, see the table below.

Type of HI-ROTOR	Clamping torque (N·cm)
PRNA1S/D	
PRNA3S/D	
PRNA10S/D, PRHA10S/D	20~30
PRNA20S/D, PRHA20S/D	
PRN30S/D, PRH30S/D	*
PROA3S/D	6~10
PROA10S/D	10~20
PROA20S/D	20~30
PRO30S/D	20~30

· Adjusting the switch position

Loosen the switch adjust screw, make the point at which the highest sensitivity of the switch is attained agree with the angle marking equivalent to the HI-ROTOR angle setting and retighten the switch adjust screw at a clamping torque of 40 to 50 N·cm. Since the angle markings are provided just for reference, make a final adjustment by cheking to see if the LED is on.

· Replacing the switch

To remove the switch, remove the switch adjust screws and plate clamp screw. To mount a switch, reverse the procedure for removal. Adjust the switch position without fail after completion of mounting

KURODA

54

hymatik

For HI-ROTORs **Switch unit** (Variable switch position type)

Compact switch unit with M type switches. These switch units are available in both reed type and proximity types, thereby covering wide field of applications.

SWITCH UNIT COMPONENTS ORDERING INSTRUCTIONS

55

COMPOSITION AND ASSEMBLING METHOD

M type reed switch M type proximity switch

REED SWITCH SPECIFICATIONS

Model No.		Unit	MA-1		MD-1	MD-3	MR
Applications	Applications		Relay, PLC		Relay	IC circuit	Relay
Load voltage		V	AC100	DC24	DC24	DC5~6	AC/DC5~100
Max. contact	Inductive load		4.57/4	1W	1.511	0.3W	1.5VA 1.5W
capcity	Resistance load		4.5VA		1.5W	1.8W	10VA 10W
	Inductive load				05 05	50 or less	50 or less
Load current	Resistance load	mA	50	25~65		300 or less	300 or less
Internal voltage	nternal voltage drop		2 or less			()
Surge suppresso	or		Not provided				
Mean response t	time	ms	1.0				
Shock resistanc	e	m/s²	294				
Ambient temper	ature	°C	5~60				
Indicator light				Red LED (Lights up at on)			Not provided
			Black 2-	core cord		Black 2-core cord Black 3-core cord	
Lead wire	Color		(Blue	(Blue line)	Black 2-core cord		Black 2-core cord
	Length	m	1				

(Note) \cdot The MA-1 cannot be used at 200V AC.

•When using the MR, the specified maximum contact capacity and load current should be both satisfied.

PROXIMITY SWITCH SPECIFICATIONS

Model No.		Unit	MT-3	MT-3U	MTP-3	MT-2	MT-2U
Applications			Relay, PLC, IC circuit		Relay	PLC	
Output method			NF	PN	PNP	NPN	
Load voltage		V	DC5	~30	DC10~30	DC24 (DC10 ~30)	
Load current		mA		5~200		5~	100
			max.20 ((at 24V)	max.20 (at 24V)		
Max. power consumpt	tion	mA	max.10 (max.10 (at 12V) max.10 (at 12V) -		-	
of switch control			max. 4	(at 5V)			
Max. leak current		μA	10		1		
Internal voltage drop		V		1.5 or less		3 or less	
Mean response time		ms		1		1	
Shock resistance		m/s²		490		49	0
Ambient temperature		°C	5~60		5~	·60	
Protection grade				IP67		IP	67
Indicator light			Red LED (Lights up at on) Yellow LED (Lights up at on)		Red LED (Lig	hts up at on)	
Lead wine	Color		Oil res	istance black 3-co	re cord	Oil resistance bl	ack 2-core cor
Lead wire	Length	m	1		1		

(Note) MTP-3 is made-to-order

57

INTERNAL CIRCUIT DIAGRAM OF SWITCH Reed switch MA-1 (+)Brown (Red) RS LED (-)Blue (Black) MD-1 LED (+)Brown (Red) RS | · (-)Blue (Black) MD-3 MR (+)Brown (Red) -oad RS £ LED Black (White) RS → (-)Blue (Black) Proximity switch MT-3,MT-3U ----- (+)Brown (Red) ĸ Main circuit of switch LED Black (White) MT-2,MT-2U (+)Brown (Red) circuit Main circuit of switch voltage Constant ∽ (-)Blue (Black) MTP-3 o(+)Brown

Main circuit of switch

К

LED

DIMENSION OF SWITCH (Unit : mm) Reed switch MA-1,MD-1,MD-3,MR Max.sensitivity Lead wire Indicator light 9 position (MR is not provided) ø 24 Proximity switch MT-3,MT-2,MTP-3 Max.sensitivity position Indicator Lead wire 4 x 1m light 9.5 8.3 23.8 3.5 MT-3U,MT-2U Max.sensitivity position Indicator light **6**(f) 8.5

SWITCH LEAD WIRE LENGTH

2.5

10.5 8.3

The standard lead wire length of M type switches is 1 m. However, lead wire length of 2 m, 3 m, 4 m and 5 m are optionaly available. Ordering instructions $\boxed{\text{MT-2}}$ - $\boxed{\text{L30}}$

24

Lead wire 4 × 1m

HYSTERESIS AND RESPONSE RANGE OF SWITCHES

Reed switch

Type of switch	Response range	Hysteresis
FM50	Approx. 35°	Approx. 2° 30'
FC50 (With hydro-cushion)	Approx. 29°	Approx. 1° 30'
FM150	Approx. 25°	Approx. 1° 30'
FC150 (With hydro-cushion)	Approx. 19°	Approx. 1°
FM300	Approx. 26°	Approx. 1° 30'
FC300 (With hydro-cushion)	Approx. 17°	Approx. 1°
FM800	Approx. 32°	Approx. 2°
FC800 (With hydro-cushion)	Approx. 13°	Approx. 1°

Surge suppressor

SURGE SUPPRESSOR SPECIFICATIONS

Model No.	Load voltage (v)	Load current (mA)
SS-1	AC100	—
SS-D	DC24	_
SS-2L	AC100/110	5~150
SS-2H	AC200/220	5~150

SURGE SUPPRESSOR DIMENSIONS (Unit : mm)

Proximity switch

Type of switch	Response range	Hysteresis
FM50	Approx. 61°	Approx. 4.5°
FC50 (With hydro-cushion)	Approx. 35°	Approx. 3°
FM150	Approx. 42.5°	Approx. 3°
FC150 (With hydro-cushion)	Approx. 30°	Approx. 2°
FM300	Approx. 36.5°	Approx. 3°
FC300 (With hydro-cushion)	Approx. 19°	Approx. 2°
FM800	Approx. 46°	Approx. 4.5°
FC800 (With hydro-cushion)	Approx. 13°	Approx. 1.5°

INTERNAL CIRCUIT DIAGRAM OF SURGE SUPPRESSOR

Bracketed () color is former color.

<u>.</u>

INDIVIDUAL INSTRUCTIONS

Be sure to read them before use. Also refer to Par. "For Safety Use" and common instructions.

DETECTION OF INTERMEDIATE ANGLE

When the FM50 is used with a relay with an response time of 20 ms, the response range is 35° . Consequently, the available oscillating speed is $35/0.02=1750^{\circ}/s$ or less. In this case, however, as the minimum oscillating time of the HI-ROTOR is 0.16s, use the switch unit at 180/0.16=1125°/s or less.

GAP BETWEEN SWITCH AND MAGNET

When mounting the switch unit, the gap between the switch and magnet is as shown below. Bending switch bracket can allow to adjust the gap.

Special hydraulic cushion for HI-ROTORs. Use these cushions when the inertia energy exceeds the allowable energy of the HI-ROTOR.

ORDERING INSTRUCTIONS

Relationship between oscillating angle and oscillating reference point

Oscillating	Oscillating angle					
reference point	90 [°]	100 [°]	180 [°]	270 [°]	280 [°]	
40 [°]	_	0	_	-	0	
45 [°]	0	_	0	0	-	

(Note)

Select an appropriate hydrocushion according to the oscillating reference point and oscillating angle of the HI-ROTOR to be used.

Т

SPECIFICATIONS

Model No.	Unit	CRN50	CRN150	CRN300	CRN800	
Load range	kg ∙ cm²	981	2942	5884	19613	
Max. absorption energy	mJ	2942	9807	19613	58840	
Max. collision angular velocity	degree/s	850	750	650	550	
Max. energy capacity per minute	mJ/min	19613	70608	137293	353039	
Ambient temperature	°C	5~50				
Absorbing angle (one end)	degree	11	12	14	15	
Mass	g	240	420	780	1620	
Applicable HI-ROTOR		PRN50, PRH50	PRN150, PRH150	PRN300, PRH300	PRN800, PRH800	

(Note) · Energy capacity per minute = Absorbing energy ×2 N: Frequency of operation (cycle/min) When a HI-ROTOR with a hydro-cushion is used, keep a working pressure of 0.3 MPa or more.

PRINCIPLE OF OPERATION

When the claw fitted to the HI-ROTOR shaft runs against the piston, the impact is converted into pressure (hydraulic pressure) applied to the back of the piston. This pressure energy changes into thermal energy when it passes through the clearance between the piston and the inside of the cylinder and through orifice of the needle for adjustment and is consumed before the piston stops at the stroke end. On the other hand, the piston on the opposit side is spring loaded and always returns to the origin.

DIMENSIONS

Model No.	Α	В	С	D	Е	F	G	Η	J	Κ	L	М	Ν	Р	Q	R	S	Т	U	V	W	Y	Ζ	AA	BB	CC	DD	EE
CRN50	50.5	6	32	4.5	14	16	8.5	14.4	56.6	9.9	40	50	4	37	7.1	17	9.2	8	7.2	39	56	R12.5	R45	6.5	30	M6×12ℓ	34	8
CRN150	56.5	7.2	36	4.5	16	18	8.5	18.4	70.7	11.3	50	62	9.5	49	8.4	25.5	11.4	10	8	60.6	80	R15	R70	10	30	M8×16ℓ	46	12
CRN300	62.5	7.2	42	4.5	16	21	12	22.5	91.9	12.7	65	87	8	61	14.2	33.2	14.1	12	12	69.2	95	R22.5	R80	15	30	M10×20ℓ	62	18
CRN800	73	7.2	50	6	17	25	12	32.5	127.0	14.2	90	118	17	82	24.7	46.7	20.6	16	13	103.9	130	R35	R120	24	30	M12×20ℓ	90	27.5

INDIVIDUAL INSTRUCTIONS

Be sure to read them before use.

 $^{ar{}}$ Also refer to Par. "For Safety Use" and common instructions.

HANDLING

WARNING

- Do not loosen nor disassemble parts other than the needle for adjustment.
 Otherwise, oil will leak.
- The hexagon nut located on the base of the needle for adjustment is not a locknut. Never rotate it. Otherwise, oil will leak.
- Do not use the hydro-cushion in places where it may be subject to dust, chips and liquid like water or oil. Such elements will cause the hydro-cushion to malfunction and will reduce the service life.

HOW TO MOUNT THE HYDRO-CUSHION

- Mount the hydro-cushion on the end with a square shaft of the HI-ROTOR using the clamp holes on the cushion body.
- ②Place the cushion body just above the port of the HI-ROTOR when mounting. Make sure that the cushion body is securely mounted on the HI-ROTOR.
- ③Before fitting the cushion claw, check if the HI-ROTOR shaft is located at the oscillating reference point, (Refer to the description on the oscillating reference point.)
- ④At the oscillating reference point, the cushion claw depresses the piston of the cushion body into body. So, turn the square shaft counterclockwise until the claw is fitted into the square shaft.
- (5)Note that the hydro-cushion cannot be used as a stopper.

KINETIC ENERGY

- TFind the moment of inertia from the size of the load and check if it is within the allowable range.
- ②Check if the collision angular velocity is within the allowable range.

 $\omega_0 \doteq 1.2\omega$ ω_0 : Collision angular velocity (Degree/s) ω : Mean angular velocity (Degree/s)

(3)Find the collision energy from the load and collision angular velocity.

 $E_1 = \frac{1}{2} \times I \times \omega_0^2 \times 10^{-1}$ (mJ) I : Moment of inertia (kg·cm²) ω_0 : Collision angular velocity (Degree/s)

(4) Find the energy generated from the torque of the HI-ROTOR. $E_2=\frac{1}{2}\times T \times \theta \times 10$ (mJ) T : Torque of HI-ROTOR (N·cm)

 θ : Absorption angle (One side) (rad)

- (5)Check if the value obtained by adding E_1 to E_2 is equal to or less than the maximum absorption energy.
- (6) Find the energy per minute from the frequency of operation. $Em=2\times N\times (E_1+E_2)$

N : Frequency of operation (cycle/min) Make sure that "Em" is equal to or less than the maximum energy capacity per minute.

 $\textcircled{O}\ensuremath{\mathsf{Use}}$ radian instead of degree.

1°=0.0174rad

DIMENSIONS OF HYDRO-CUSHION CLAWS

Oscillating angle 270°(Reference point 45°) (Unit : mm)

Model No.	А	В	С	D	Е	F	G	Н	J	Κ	L	М	Ν	Р
CRN50	23	13	16	13.7	10	1.2	2.6	10	M5	7	38	18	4.5	8
CRN150	28	16	24	19.5	12	1.2	4.1	13	M6	9	51	20	5	10
CRN300	40	22	35	30.5	14	1.2	5.5	19	M8	11	68	23.5	6.5	12
CRN800	63	34	58	49	18	1.2	8	32	M10	14.5	98	29.5	8	16

Oscillating angle 180° (Reference point 45°) (Unit : mm)

CRN50	23	10	16	13.7	10	1.2	2.5	10	M5	7	38	18	18.5	8	5
CRN150	28	12	24	19.5	12	1.2	4	13	M6	9	51	20	23	10	5
CRN300	40	18	35	30.5	14	1.2	5.4	19	M8	11	68	23.5	33.5	12	9
CRN800	63	29	58	49	18	1.2	8	32	M10	14.5	98	29.5	55	16	14

Oscillating angle 90° (Reference point 45°)

Model No.	А	В	С	D	Ε	F	G	Η	J	Κ	L	Μ	Ν	Ρ	Q
CRN50	23	10	16	13.7	10	1.2	2.5	10	M5	7	76	18	18.5	8	5
CRN150	28	12	24	19.5	12	1.2	4	13	M6	7.5	102	20	23	10	5
CRN300	40	18	35	30.5	14	1.2	5.4	19	M8	9	136	23.5	33.5	12	9
CRN800	63	29	58	49	18	1.2	8	32	M10	14.5	196	29.5	55	16	14

Special angle (Reference point 40°, 45°) (Unit : mm)

Model No.	А	D	E	F	G ±0.1	H +0.05 0	J	Κ	L	М	Ν	Р	S	Т	W
CRN50	26	5.5	8	1.5	2.5	10	M5 depth 13	7	37	17.5	8.5	7	18	5	13
CRN150	32	7.5	12	1.5	4	13	M6 depth 16	9	51	20	10.5	10	21	5	16
CRN300	48	13	14	1.5	5.5	19	M8 depth 22	11	68	23.5	15	12	30	6	24
CRN800	78	20	18	1.5	8	32	M10 depth 30	14	98	28.5	26	15.5	45	6	39

(Note) • Material : S45~55C

•We recommend to harden the claw at $H_{\text{R}}\text{c}\doteqdot40$ for oscillating angle of 260° or more.

63

DIMENSIONS OF HYDRO-CUSHION CLAWS

Oscillating angle 280° (Reference point 45°) (Unit : mm)

Model No.	А	В	С	D	F	G	Н	J	Κ	L	М	Ν	Р
CRN50	23	13	16	13.5	1.2	5	10	M5	7	37	20	4.5	10
CRN150	28	16	24	19.5	1.2	8	13	M6	9	51	20	5	10
CRN300	40	22	35	30.5	1.2	11	19	M8	11	68	24	6.5	12.5
CRN800	63	34	58	49	1.2	16	32	M10	14	98	28.5	8	15.5

Oscillating angle 180° (Reference point 40°) (Unit : mm)

Model No.	А	В	С	D	F	G	Η	J	Κ	L	М	Ν	Р
CRN50	23	10	16	13.5	1.2	2.5	10	M5	7	37	17.5	18.5	7
CRN150	28	12	24	19.5	1.2	4	13	M6	9	51	20	23	10
CRN300	40	18	35	30.5	1.2	5.5	19	M8	11	68	23.5	33.5	12
CRN800	63	29	58	49	1.2	8	32	M10	14.5	98	29.5	55	16

Oscillating angle 100° (Reference point 40°) (Unit : mm)

Model No.	А	В	С	D	F	G	Η	J	Κ	L	М	Ν	Р
CRN50	23	10	16	13.5	1.2	2.5	10	M5	7	74	17.5	18.5	7
CRN150	28	12	24	19.5	1.2	4	13	M6	9	102	20	23	10
CRN300	40	18	35	30.5	1.2	5.5	19	M8	11	136	23.5	33.5	12
CRN800	63	29	58	49	1.2	8	32	M10	14	196	28.5	55	15.5

Oscillating angle 90°(Reference point 40°) (Unit : mm)

Model No.	А	В	С	D	Е	F	G	Н	J	Κ	L	М	Ν	Р
CRN50	23	10	16	13.5	8	1.2	2.5	10	M5	7	74	17.5	18.5	7
CRN150	28	12	24	19.5	12	1.2	4	13	M6	9	102	20	23	10
CRN300	40	18	35	30.5	14	1.2	5.5	19	M8	11	136	23.5	33.5	12
CRN800	63	29	58	49	32	1.2	8	32	M10	14	196	28.5	55	15.5

HI-ROTOR with special shape of shaft (Made-to-order)

hymatik

Miniature HI-ROTOR/ PRNA1, PRNA3, PRNA10, PRNA20, PRN30

For detailed specifications, size and time of delivery, contact KURODA. For other models than listed below, consult with KURODA.

65

HI-ROTOR with special shape of shaft (Made-to-order)

HI-ROTOR/ PRN50, PRN150, PRN300, PRN800

For detailed specifications, size and time of delivery, contact KURODA. For other models than listed below, consult with KURODA.

KURODA

hymatik

Reference data for selecting HI-ROTOR

SELECTING A PNEUMATIC HI-ROTOR

Step 1 Selecting a size

When simple static force such as clamping force is required:

Determine required force, arm length from HI-ROTOR and

operating pressure. Required force F (N)

Arm length from HI-ROTOR ℓ (cm) Operating pressure P (MPa)

2 Calculating required torque Ts

 $T_S = F \times \ell$

F: Required force (N)

 ℓ : Arm length from HI-ROTOR (cm)

(3)Compare the output torque TH of the HI-ROTOR under operating pressure with the required torque Ts to select a HI-ROTOR that can satisfy the following equation.

hymatik

Refer to Pages 14, 23, 34, 42 and 47 for output torque table. $T_S = T_H$

Ts : Required torque (N·cm)

TH: Output torque of HI-ROTOR (N·cm)

When moving a load:

The required torque for moving a load is the total of resistance torque and acceleration torque.

The resistance torque is the sum of friction, gravity and external force/torques

The acceleration torque is provided to accelerate the load to certain speed agaist inertia.

①Calculating resistance torque

(a)Determine required force, arm length from HI-ROTOR and operating pressure.

Required force F (N)

Arm length from HI-ROTOR ℓ (cm) Operating pressure P (MPa)

b Calculating resistance torque T_R

 $T_{R} = K \times F \times \ell$ (N·cm)

K : Margin factor Where there is noload variation K=2Where there is load variation K = 5(Ehere resistance torque by gravity acts on:)

(Note) Assuming that K<5, where there is load variation, the angular velocity increases, and thus smooth operation cannot be obtained.

Calculating resistance torque	Horizontal load	Vertical load
Required	External force Balanced load Unbalanced load	Load resistance exists. External force Balanced load Unbalanced load Unbalanced load gravity
Not required	No load resistance exists. Balanced Unbalanced load	No load resistance exists. Balanced load

2 Calculating acceleration torque

(a) Determine oscillating angle θ and oscillating time t. Oscillating time is the time required for the vane from starting movement to reaching the oscillation end.

Oscillating angle θ (rad)

0	()	
	90°=1.5708	rad
	180°=3.1416	rad
	270°=4.7124	rad

Oscillating time t (s)

bCalculating moment of inertia

Calculate moment of inertia from the shape and mass of load. For calculating formula, refer to the table of "Calculating moment of inertia".

I (Kg·cm²)

©Calculating angular velocity

 $\alpha = \frac{\theta}{\alpha}$

 θ : Oscillation angle (rad) t: Oscillation time (s)

dCalculating acceleration torque TA

 $T_A = 5 \times 1 \times \alpha \times 10^{-2}$ (N·cm)

I: Moment of inertia of load (rad)

 α : Angular velocity (s)

③Calculating required torque T

 $T = T_R + T_A$ (N·cm)

T_R : Resistance torque (N·cm)

TA: Acceleration velocity (N·cm)

(4)Compare the output torque TH of the HI-ROTOR under operating pressure with the required torque Ts to select a HI-ROTOR that can satisfy the following equation. Refer to Pages 14, 23, 34, 42 and 47 for output torque table.

Тѕ≤Тн

Ts: Required torque (N·cm)

TH: Output torque of HI-ROTOR (N·cm)

Reference data for selecting HI-ROTOR

Step 2 Checking the oscillating time

Since the upper and lower limits of the oscillating time are fixed for each model, set it within such the range. Check the oscillating time is within the specification indicated in the pages 15, 25, 35, 42 and 47.

Step 3 Checking allowable energy

For the inertia, use the HI-ROTOR so that energy of inertia should be within the allowable energy of the HI-ROTOR. For this purpose, check the allowable energy for the HI-ROTOR in

accordance with the following procedure :

(1) Calculating angular velocity ω

- $\omega = \theta / t$ (rad/s)
- θ : Oscillating angle (rad) t: Oscillating time (s)

②Calculating energy of inertia of load E

$\mathsf{E} = \frac{1}{2} \times \mathsf{I} \times \omega^2 \times 10^{-1} \quad \text{(mJ)}$

I: Moment of inertia of load (kg·cm²) $\omega:$ Angular velocity (rad/s)

- ③Check the energy of inertia E is within the allowable energy indicated in the specifications shown in the pages 14, 23 and 34. (Note) If energy of inertia exceeds the allowable energy, HI-ROTOR
 - may be damaged. Therefore, it is necessary to take the following measures :

•Select a larger size HI-ROTOR by which energy of inertia is lower than the allowable energy.

•Slow down the oscillating time.

•Fit a cushion or other shock absorber directly on the load side.

SELECTING A HYDORO-CUSHION

Step 1 Checking the allowable energy

Calculate the load inertia. When the calculated value exceeds the allowable energy for the HI-ROTOR, mount a cushion (Hydoro-cushion) suitable for the HI-ROTOR. For the load inertia, refer to "Selecting a Pneumatic HI-ROTOR".

Step 2 Checking the capability of the cushion

Calculate the moment of inertia by the shape and mass of the load and make sure that it is within the allowable range. Make sure that the collision angular velocity is equal or less than the prescribed maximum value. $\omega_0 \doteq 1.2 \times \omega$ (Degree/s) ω : Mean angular velocity (Degree/s) ┛ Calculate the collision energy from the load and collision angular velocity. $E_1 = \frac{1}{2} \times I \times \omega_0^2 \times 10^{-1}$ (mJ) I: Moment of inertia (kg·cm²) ω_0 : Collision angular velocity (rad/s) 1°=0.0174rad ∎ Find the energy generated from the torque of the HI-ROTOR. $E_2 = \frac{1}{2} \times T \times \theta \times 10 \quad (mJ)$ T : Torque of HI-ROTOR (N·cm) θ : Absorption angle of cushion (one side) (rad) ┸ Check if the value obtained by adding E₁ to E₂ is equal or less than the maximum absorption energy. Find the energy per minute from the frequency of operation. $E_m = 2 \times N \times (E_1 + E_2)$ (mJ/min) N : Frequency of operation (cycle/min) ∎

Make sure that "Em" is equal or less than the maximum energy capacity per minute.

It is OK if all the above-mentioned items are satisfied. If any one item is not satisfied, hydro-cushion cannot be used. In this case, another shock absorber having a larger absorbing capacity is required.

KURODA

hymatik

Reference data for selecting HI-ROTOR

Calculating the moment of inertia

Shape	Sketch	Requirement	Inertia moment I (kg·cm ²)	Radius of gyration	Remarks
Disc		Diameter d (cm) Mass M (kg)	$I = M \cdot \frac{d^2}{8}$	<u>d²</u> 8	
Stepped disc		$\begin{array}{llllllllllllllllllllllllllllllllllll$	$I = M_1 \cdot \frac{d_1^2}{8} + M_2 \cdot \frac{d_2^2}{8}$		When portion d_2 is much smaller than portion d_1 , value of d_2 , is negligible.
Bar (with rotating center at the end)		Bar length ℓ (cm) Mass M (kg)	$I = M \cdot \frac{\ell^2}{3}$	$\frac{\ell^2}{3}$	If the ratio of the bar width : length is over 0.3, use formula for rectangle.
Rectangular parallelepiped		Side length a (cm) b (cm) Distance between the center of gravity and rotation l (cm) Mass M (kg)	$I=M(\ell^2+\frac{a^2+b^2}{12})$	$\ell^2 + \frac{a^2 + b^2}{12}$	
Bar (with rotating center at the center)		Bar length ℓ (cm) Mass M (kg)	$I=M\cdot\frac{\ell^2}{12}$	$\frac{\ell^2}{12}$	If the ratio of the bar width : length is over 0.3, use formula for rectangle.
Rectangular parallelepiped		Side length a (cm) b (cm) Mass M (kg)	$I = M \cdot \frac{a^2 + b^2}{12}$	$\frac{a^2+b^2}{12}$	
Concentrated load	Concentrated load M1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$I = M_{1} \cdot \ell^{2} + M_{1} \cdot K_{1}^{2} + M_{2} \cdot \frac{\ell^{2}}{12}$ Case of disc $K_{1}^{2} = \frac{d^{2}}{8}$	K_1^2 : Select from above this column	When M_2 is much smaller than M_1 , assume M_2 to be 0 for calculation.
How to	o convert the inertia of load	applied through gears "I _L " fo	r HI-ROTOR's shaft		· · · · · · · · · · · · · · · · · · ·
Gear	b Charles Charles Charles Charles HI-ROTOR IH	Gear HI-ROTOR side a Load side b Inertia moment of load I _L (kg⋅cm²)	Inertia moment of load for HI-ROTOR's shaft $I_{H} = (\frac{a}{b})^{2}I_{L}$		When a large gear is required, it is necessary to take inertia moment of gear into consideration.

69

hymatik

Key for HI-ROTOR

HI-ROTORs with keyway are accompanied by the following keys, respectively.

(Unit : mm)

						(Unit : mm)
Model No.	Key size	b	h	l	*C	R
PRNA20 PROA20 PRHA20	3×3×16	3 _{-0.025}	3 _00	16 _{-0.18}	0.16~0.25 (R0.16~0.25)	1.5
PRN30 PRO30 PRH30	4×4×18	4 _{-0.03}	4 _0.03	18 _{-0.18}	0.16~0.25 (R0.16~0.25)	2
PRN50 PRH50	4×4×20	4 _0.03	4_0_0	20_0.21	0.16~0.25 (R0.16~0.25)	2
PRN150 PRH150	5×5×36	5 _0.03	5 _0_03	36_0.25	0.25~0.40 (R0.25~0.40)	2.5
PRN300 PRH300	7×7×40	7 _0.036	7 _00	40 _0.25	0.25~0.40 (R0.25~0.40)	3.5
PRN800 PRH800	12×8×40	12 _0.043	8 _0.09	40 _0.25	0.40~0.60 (R0.40~0.60)	6

Parker Worldwide

Europe, Middle East, Africa

AE – United Arab Emirates, Dubai Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY – Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH – Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES – Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI – Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HU - Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com IE – Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ – Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU – Russia, Moscow Tel: +7 495 645–2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00

parker.sweden@parker.com SK – Slovakia, Banská Bystrica

Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA – Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com North America

CA – Canada, Milton, Ontario Tel: +1 905 693 3000 US – USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN – China, Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN – India, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Chiba Tel: +81 (0)45 479 64 2282 sales@kpl.parker.com

KR – South Korea, Seoul Tel: +82 2 559 0400

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

SG – Singap ore Tel: +65 6887 6300

TH – Thailand, Bangkok Tel: +662 186 7000 99

TW – Taiwan, Taipei Tel: +886 2 229 8 8987

ID - Indonesia, Tangerang Tel: +62 21 7588 1906

VN - Vietnam, Ho Chi Minh Tel: +84 3775 4651

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR – Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

CL – Chile, Santiago Tel: +56 2 623 1216

MX – Mexico, Apodaca Tel: +52 81 8156 6000

© 2011 Parker Hannifin Corporation. All rights reserved.

Kuroda Pneumatics LTD. Customer Service Phone:+81-479-64-2282 FAX: +81-479-64-2291

www.parkerkuroda.com www.parker.com CAT. NO. KPL1224E-a June 2012

Your local authorized Parker distributor