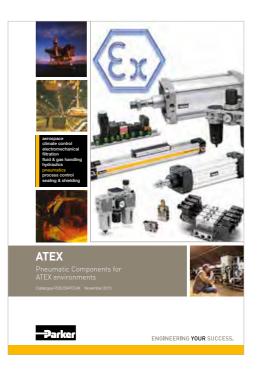


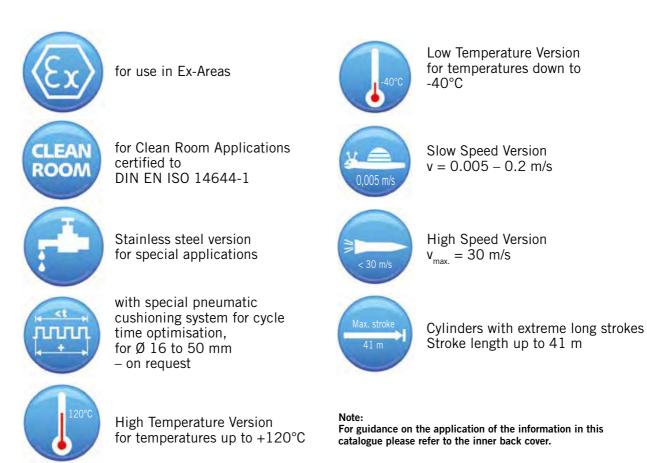
Modular Pneumatic Linear Drive Systems

ORIGA SYSTEM PLUS

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

ENGINEERING YOUR SUCCESS.


Parker Origa rodless pneumatic cylinders are the first rodless cylinders that have been approved for use in potentially explosive atmospheres in Equipment Group II, Category 2 GD.


The Cylinders are to the ATEX Directive 2014/34/EU for Pneumatic Components.

For the different classifications and details please see pages 35, 36.

You will find further information on the ATEX Directives in our brochure PDE2584TCUK.

Special Versions

Contents Linear Drives

	ORIGA System Plus - the concept	Page
	Introduction – OSP Concept	2-3
	Modular Components Overview	4-5
	Control Examples for OSP-P	6
	OSP-P Application examples	7
	Rodless Pneumatic Cylinders	
	Overview	9-13
	Series OSP-P Ø10 to 80 mm	15-21, 24
	Integrated Valves VOE	22-23
	Long-Stroke Cylinders	25-29
	Clean Room Cylinders	31-34
	ATEX-Version 🔄	35-36
NEW	ATEX-Version 🖾 BASIC GUIDE	35-36
	ATEX-Version 🐵 Plain Bearing Guide SLIDELINE	35-36
	Bi-parting Version	37-38
NEW	BASIC GUIDE BG	39-45
	Linear Guides	
	Linear Guides Overview	47-48
		47-48 49-51
	Overview	
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE	49-51
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide	49-51 49-51
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide POWERSLIDE Aluminium-Roller Guide	49-51 49-51 53-57
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide POWERSLIDE Aluminium-Roller Guide PROLINE Aluminium-Roller Guide	49-51 49-51 53-57 59-61
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide POWERSLIDE Aluminium-Roller Guide PROLINE Aluminium-Roller Guide - PROLINE with ACTIVE-Brake Recirculating Ball Bearing Guide	49-51 49-51 53-57 59-61 59-61
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide POWERSLIDE Aluminium-Roller Guide PROLINE Aluminium-Roller Guide - PROLINE with ACTIVE-Brake Recirculating Ball Bearing Guide STARLINE	49-51 49-51 53-57 59-61 59-61 63-69
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide POWERSLIDE Aluminium-Roller Guide PROLINE Aluminium-Roller Guide - PROLINE with ACTIVE-Brake Recirculating Ball Bearing Guide STARLINE - Variable stop VS	49-51 49-51 53-57 59-61 59-61 63-69 66-69
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide POWERSLIDE Aluminium-Roller Guide PROLINE Aluminium-Roller Guide - PROLINE Recirculating Ball Bearing Guide STARLINE - Variable stop VS Recirculating Ball Bearing Guide KF	49-51 49-51 53-57 59-61 59-61 63-69 66-69 71-77
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide POWERSLIDE Aluminium-Roller Guide PROLINE Aluminium-Roller Guide - PROLINE with ACTIVE-Brake Recirculating Ball Bearing Guide STARLINE - Variable stop VS Recirculating Ball Bearing Guide KF - Variable stop VS	49-51 49-51 53-57 59-61 59-61 63-69 66-69 71-77 74-77
	Overview Plain Bearing Guide SLIDELINE Plain Bearing Guide SLIDELINE - with ACTIVE-Brake Roller Guide POWERSLIDE Aluminium-Roller Guide PROLINE Aluminium-Roller Guide - PROLINE with ACTIVE-Brake Recirculating Ball Bearing Guide STARLINE - Variable stop VS Recirculating Ball Bearing Guide KF - Variable stop VS Heavy Duty Guide HD	49-51 49-51 53-57 59-61 59-61 63-69 66-69 71-77 74-77 79-86

Brakes	Page
Overview	87-88
ACTIVE-Brakes	07 00
ACTIVE-Brake – for Standard Cylinder	89-92
Plain Bearing Guide SLIDELINE – with ACTIVE-Brake	49-51
Aluminium-Roller Guide PROLINE with ACTIVE-Brake	59-61
PASSIVE-Brakes	
Multi-Brake: PASSIVE-Brake with Plain Bearing Guide SLIDELINE	93-96
Multi-Brake: PASSIVE-Brake with Aluminium-Roller Guide PROLINE	97-99
OSP -Accessories	
Overview	101-102
Clevis Mounting	103-104
End Cap Mounting	105
Mid-Section Support	106
Mountings for Linear Drives fitted with OSP-Guides	107-115
Inversion Mounting	117
Adaptor Profile	118
T-Slot Profile	119
Connection Profile	120
Duplex Connection	121
Multiplex Connection	122
Magnetic Switches	
– T-Slot Version	123-126
– ATEX-Version 🔄 on request	
Cable Cover	127
Displacement Measuring Systems ORIGA SENSOFLEX	
Overview	129-130
– Series SFI-plus	129 -133

The System Concept

ONE CONCEPT – THREE DRIVE OPTIONS

Based on the Parker Origa rodless cylinder, proven in world wide markets, Parker Origa now offers the complete solution for linear drive systems. Designed for absolute reliability, high performance, ease of use and optimised engineering the ORIGA SYSTEM PLUS satisfies even the most demanding applications.

ORIGA SYSTEM PLUS

is a totally modular concept which offers the choice of pneumatic or electric actuation, with guidance and control modules to suit the exact needs of individual installations. The actuators at the core of the system all have a common aluminium extruded profile, with double dovetail mounting rails on three sides, these are the principle building blocks of the system to which all modular options are directly attached.

SYSTEM MODULARITY

• Pneumatic Drive - For all round versatility and convenience, combining ease of control and broad performance capability. Ideally suited for point-to point operations, reciprocating movements and simple traverse / transfer applications.

• Electric Screw Drive – For high force capability and accurate path and position control.

For additional information on electrical linear drives OSP-E, please refer to catalogue P-A4P017E.

• Electric Belt Drive

 For high speed applications, accurate path and position control and longer strokes.

For additional informations on electrical linear drives OSP-E, please refer to catalogue P-A4 P017E.

- Different guidance options provide the necessary level of precision, performance and duty for various applications.
- Compact solutions, which are simple to install and can be easily retro-fitted.
- Valves and control options can be directly mounted to the actuator system.
- Diverse mounting options to provide total installation flexibility.

INTRODUCTION OSP - CONCEPT

* Information on electrical linear drives series OSP-E, please refer to catalogue P-A4P017GB

	, p		,
Basic Linear Drive Standard Version • Series OSP-P • Series OSP-E* Belt drive		BASIC GUIDE • Series OSPP-BG	
Belt drive with integrated Guides Vertical belt drive with recirculating ball bearing guide Series OSP-E* Screw drive (Ball Screw, Trapezoidal Screw)	- 9	Duplex Connection • Series OSP-P	10 - O
		Multiplex-Connection Series OSP-P	
Air Connection on the End-face or both at One End • Series OSP-P			
Long-Stroke Cylinders for strokes up to 41 m	S.	Linear Guides - SLIDELINE • Series OSP-P • Series OSP-P	
• Series OSP-P	0-	• Series OSP-E Screw drive* Linear Guides	
Clean Room Cylinder certified to DIN EN ISO 146644-1	9	- POWERSLIDE Series OSP-P Series OSP-E Belt drive* Series OSP-E Screw drive*	
 Series OSP-P Series OSP-ESB 	0.	Linear Guides – PROLINE	
Products for ATEX Areas		 Series OSP-P Series OSP-E Belt drive* Series OSP-E Screw drive* 	0
Series OSP-P Rodless Cylinders	0=	Linear Guides – STARLINE • Series OSP-P	
Products for ATEX Areas		Linear Guides	
• Series OSP-P Rodless Cylinders with Linear Guide BASIC GUIDE		 − KF Series OSP-P 	
Products for ATEX Areas		Heavy Duty Linear Guides - HD	111
• Series OSP-P Rodless Cylinders with Linear Guide SLIDELINE		Series OSP-P Series OSP-E Screw drive*	1 1 1
Bi-parting Version • Series OSP-P		Intermediate stop module – ZSM • Series OSP-P	
Integrated 3/2 Way Valves • Series OSP-P	A A	Brakes • ACTIVE Brakes	
Clevis Mounting Series OSP-P Series OSP-E Belt drive*		Passive Brakes	
Series OSP-E Screw drive* End Cap Mounting		Magnetic Switches Series OSP-P 	
 Series OSP-P Series OSP-E Belt drive* Series OSP-E Screw drive* 	0	Series OSP-E Belt drive* Series OSP-E Screw drive* ATEX-Versions	F
Mid-Section Support • Series OSP-P • Series OSP-E Belt drive* • Series OSP-E Screw drive*		SENSOFLEX-Measuring system Series SFI-plus 	10 ⁻¹¹ 00
Inversion Mounting		Variable Stop VS • Series OSP-P	
 Series OSP-P Series OSP-E Belt drive* Series OSP-E Screw drive* 		with Linear Guide STL, KF, HD	A AM

The right to introduce technical modifications is reserved

Linear Drives	OSP-P10	OSP-P16	OSP-P25	OSP-P32	OSP-P40	OSP-P50	OSP-P63	OSP-P80
Theoretical force at 6 bar [N]	47	120	295	483	754	1178	1870	3010
Effective force at 6 bar [N]	32	78	250	420	640	1000	1550	2600
Velocity v [m/s]	>0.005	>0.005	>0.005	>0.005	>0.005	>0.005	>0.005	>0.005
Magnetic piston (three sides)	Х			L L				
Lubrication - prelubricated								
Multiple air ports (4 x 90°)	Х		٦	L L				
Both Air Connections at End-face	Х	0	0	0	0	0	0	0
Air Connection on the End-face	X	0	0	0	0	0	0	0
Cushioning								
Cushioning length [mm]	2,50	11	17	20	27	30	32	39
Stroke length [mm]	1-6000	1-6000	1-6000	1-6000	1-6000	1-6000	1-6000	1-6000
Pressure range p _{max} [bar]	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Temperature range [°C]	-10-+80	-10-+80	-10-+80	-10-+80	-10-+80	-10-+80	-10-+80	-10-+80
Viton / chemical resistance	0	0	0	0	0	0	0	0
Stainless steel parts	0	0	0	0	0	0	0	0
Clevis Mounting	0	0	0	0	0	0	0	0
Slow speed lubrication	0	0	0	0	0	0	0	0
Duplex Connection / Multiplex Connection	X	on request	0	0	0	0	on request	on request
Tandem piston	0	0	0	0	0	0	0	0
Basic Cylinder								
F [N]	20	120	300	450	750	1200	1650	2400
M _x [Nm]	0.2	0.45	1.5	3	6	10	12	24
M _y [Nm]	1	4	15	30	60	115	200	360
M _z [Nm]	0.3	0.5	3	5	8	15	24	48
Basic Guide								
F [N]	X	X	590	850	1600	2000	X	X
M _x [Nm]	X	X	10	17	39	67	X	X
 Μ _γ [Nm]	X	×	28	43	110	165	×	X
M _z [Nm]	X	×	28	43	110	165	X	×
Slideline			20		110	105	^	^
F [N]	~	325	675	925	1600	2000	2500	2500
M _x [Nm]	X X	6	14	29	50	77	120	120
M _y [Nm]	×	11	34	60	110	180	260	260
M _z [Nm]	X	11	34	60	110	180	260	260
Proline								
F [N]	X	542	857	1171	2074	3111	X	Х
M _x [Nm]	X	8	16	29	57	111	X	×
M _y [Nm]	Х	12	39	73	158	249	Х	Х
M _z [Nm]	×	12	39	73	158	249	×	×
Powerslide								
F [N]	Х	1400	1400-3000	1400-3000	3000	3000-4000	Х	Х
M _x [Nm]	Х	14	14-65	20-65	65-90	90-140	Х	Х
M _y [Nm]	X	45	63-175	70-175	175-250	250-350	X	Х
M _z [Nm]	X	45	63-175	70-175	175-250	250-350	X	X
Starline		-						
F [N]	×	1000	3100	3100	4000-7500	4000-7500	×	×
M _x [Nm]	×	15	50	62	150	210	×	×
M _y [Nm]	X	30	110	160	400	580	X	X
M _z [Nm]	X	30	110	160	400	580	X	×
– variable Stop	Х	0	0	0	0	0	×	Х

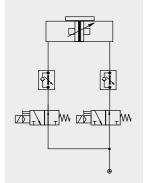
Linear Drives	OSP-P10	OSP-P16	OSP-P25	OSP-P32	OSP-P40	OSP-P50	OSP-P63	OSP-P80
KF-Guide								
F [N]	X	1000	3100	3100	4000-7100	4000-7500	X	X
M _x [Nm]	X	12	35	44	119	170	X	Х
M _v [Nm]	X	25	90	133	346	480	X	X
M _z [Nm]	X	25	90	133	346	480	X	X
– variable Stop	X	0	0	0	0	0	X	X
HD Heavy Duty Guide								
F [N]	X	X	6000	6000	15000	18000	X	X
M, [Nm]	X	X	260	285	800	1100	X	X
	X	X	320	475	1100	1400	X	X
M, [Nm]	X	X	320	475	1100	1400	X	
– Variable Stop	X	X	0	0	0	0	X	X
 Intermediate stop module 	X	X	0	X	X	X	X	X
ACTIVE Brake								
Braking force at 6 bar (brake surface dry) [N]	X	X	350	590	900	1400	2170	4000
Slideline SL/Proline PL with Brakes								
ACTIVE Brake								
SL Braking force at 6 bar (brake surface dry [N]	X	X	325	545	835	1200	X	X
PL Braking force at 6 bar (brake surface dry) [N]	X	X	on request	on request	on request	on request	X	Х
Passive Brake Multibrake								
SL Braking force (brake surface dry) [N]	X	X	470	790	1200	1870	2900	2900
PL Braking force (brake surface dry) [N]	X	X	315	490	715	1100	_	-
Magnetic Switches								
T-Slot-Version	0	0	0	0	0	0	О	0
ATEX-Version for EX- Areas 😥	0	0	0	0	0	0	0	0
Displacement measuring systems								
SFI-plus incremental	X	X	0	0	0	0	0	0
Integrated valves 3/2 WV NO VOE	X	X	0	0	0	0	on request	on request
Mountings								
End Cap Mounting / Mid-Section Support	0	0	0	0	0	0	0	0
Inversion Mounting	Х	0	0	0	0	0	0	0
Shock absorber for intermediate positioning	Х	X	on request	on request	on request	on request	Х	Х
Adaptor Profile / T-Slot Profile	Х	0	0	0	0	0	O/X	Х
Special Cylinders								
Special Pneumatical Cushioning System	Х	on request	X	Х				
Clean Room Cylinders to DIN EN ISO 14644-1	X	0	0	0	X	Х	Х	Х
Long-Stroke Cylinders (max. stroke length 41 m)	Х	×	X	X	X	0	0	0
ATEX-Version for EX-Areas $\overleftarrow{\epsilon x}$	0	0	0	0	О	0	0	0
Bi-parting Version	Х	X	X	X	0	X	X	X
High-Speed up to 30 m/s	Х	on request	on request	on request	×	X	X	Х

The right to introduce technical modifications is reserved

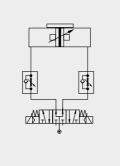
= Standard version

 \blacktriangle = longer strokes on request

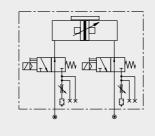
* = other temperature ranges on request


O = Option

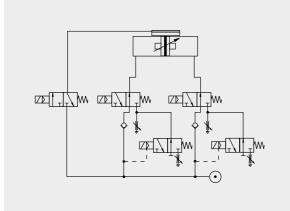
X = not applicable


Examples

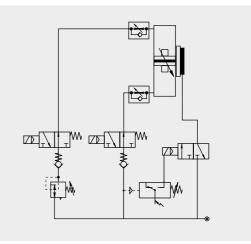
CONTROL EXAMPLES FOR OSP-P


Circuit diagram for end of stroke application. Intermediate positioning is also possible.

The cylinder is controlled by two 3/2-way valves (normally open). The speed can be adjusted independantly for both directions.


Circuit diagram for end of stroke application. Intermediate positioning is also possible.

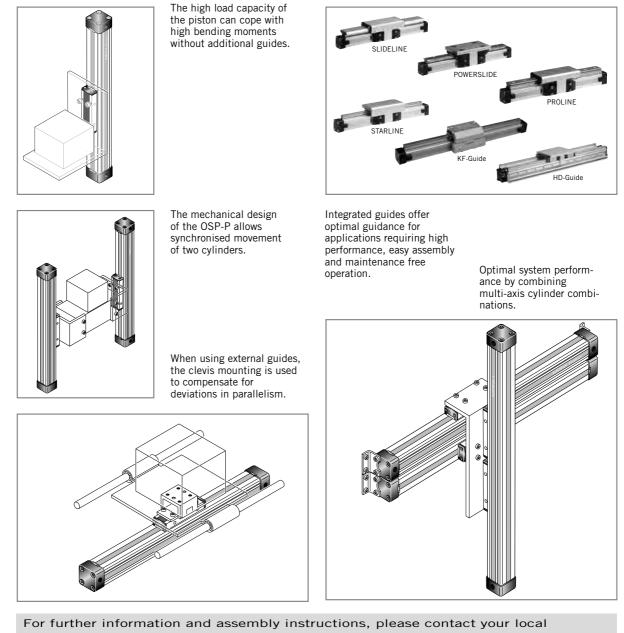
The cylinder is controlled by a 5/3-way valve (middle position pressurized). The speed can be adjusted independantly for both directions.



The optional integrated VOE Valves offer optimal control, and allow accurate

positioning of intermediate positions and the lowest possible speeds.

Fast/Slow speed cycle control with pneumatic brake for accurate positioning at high velocities. Additional 3/2-way valves with adjustable throttle valves at the exhaust of the standard directional control valves for two displacement speeds in each direction of the piston's travel. The valve controlling the brake is activated after the slow speed cycle is activated


The combination of an OSP-cylinder with the passive MULTIBRAKE as shown here, allows accurate positioning and safety in case of loss of pneumatic air pressure.

Examples

OSP-P APPLICATION EXAMPLES

ORIGA SYSTEM PLUS – rodless linear drives offer maximum flexibility for any application.


For further information and assembly instructions, please contact your loca Parker Origa dealer.

The right to introduce technical modifications is reserved

Rodless Pneumatic Cylinders Series OSP-P

Contents	

Description	Page
•	Fage
Standard Cylinders	
Overview	9-13
Technical Data	15-17
Dimensions	18-23
Order Instructions	24
Long-Stroke Cylindes	
Technical Data	25-26
Dimensions	27-28
Order Instructions	29
Clean Room Cylinders	
Technical Data	31-32
Dimensions	33
Order Instructions	34
Cylinders ATEX-Version $\langle \widehat{Ex} \rangle$	
Technical Data	35
Dimensions	16-21
Order Instructions	36
Cylinders for synchronized bi-parting mo	vements
Technical Data	37
Dimensions	38
Order Instructions	38
BASIC GUIDE BG	·
Technical Data	39
Dimensions	42
Order Instructions	45

The right to introduce technical modifications is reserved

The System Concept and Components

ORIGA SYSTEM PLUS – INNOVATION FROM A PROVEN DESIGN

A completely new generation of linear drives which can be simply and neatly integrated into any machine layout.

A NEW MODULAR LINEAR DRIVE SYSTEM

With this second generation linear drive Parker Origa offers design engineers complete flexibility. The well known ORIGA cylinder has been further developed into a combined linear actuator, guidance and control package. It forms the basis for the new, versatile ORIGA SYSTEM PLUS linear drive system.

All additional functions are designed into modular system components which replace the previous series of cylinders.

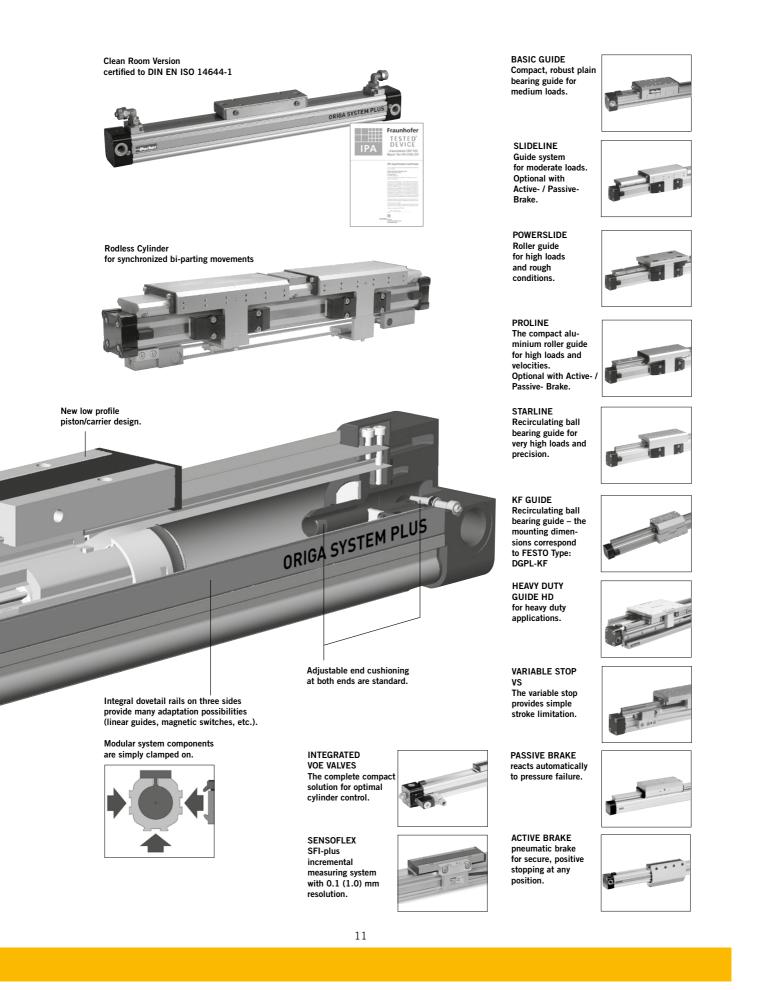
MOUNTING RAILS ON 3 SIDES

Mounting rails on 3 sides of the cylinder enable modular components such as linear guides, brakes, valves, magnetic switches etc. to be fitted to the cylinder itself. This solves many installation problems, especially where space is limited. The modular system concept forms an ideal basis for additional customer-specific functions.

Magnetic piston as standard - for contactless position sensing on three sides of the cylinder.

Corrosion resistant steel outer sealing band and robust wiper system on the carrier for use in aggressive environments.

Proven corrosion resistant steel inner sealing band for optimum sealing and extremely low friction.


Combined clamping for inner and outer sealing band with dust cover.

Stainless steel screws optional.

> Low friction piston seals for optimized running characteristics

End cap can be rotated to any one of the four positions (before or after delivery) so that the air connection can be in any desired position. Optimized cylinder profile for maximum stiffness and minimum weight. Integral air passages enable both air connections to be positioned at one end, if desired.

Accessories

OPTIONS AND ACCESSORIES FOR SYSTEM VERSATILITY

ATEX-Version

For use in Ex-Areas

STAINLESS VERSION

environments.

stainless steel

department.

For use in constantly damp

(material no.1.4301 / 1.4303)

Specially formulated grease lubrication

All screws are A2 quality

SLOW SPEED OPTIONS

facilitates slow, smooth

with Viton® on demand.

VITON® VERSION

areas.

Oil free operation preferred.

For use in an environment with high temperatures or in chemically aggressive

and uniform piston travel in the speed range from 0.005 to 0.2 m/s. Minimum achievable

speeds are dependent on several factors. Please consult our technical

Slow speed lubrication in combination

Page 35-36

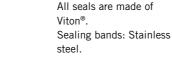
SERIES OSP-P

STANDARD VERSIONS OSP-P10 to P80

Page 15-17

Standard carrier with integral guidance. End cap can be rotated $4 \times 90^{\circ}$ to position air connection on any side.

Magnetic piston as standard. Dovetail profile for mounting of accessories and the cylinder itself.


LONG-STROKE VERSION Page 25-29 For extremely long strokes up to max. 41 m

BASIC CYLINDER OPTIONS

CLEAN ROOM CYLINDERS Page 31-34

For use in clean room applications, certified with the IPA-Certificate (to DIN EN ISO 14644-1). The special design of the linear drive enables all emissions to be led away.

END-FACE AIR CONNECTION

Page 20 To solve special installation problems.

BOTH AIR CONNECTIONS AT ONE END Page 21

For simplified tubing connections and space saving.

INTEGRATED VOE VALVES Page 22 The complete compact solution for optimal cylinder control.

DUPLEX CONNECTION

Page 121

The duplex connection combines two OSP-P cylinders of the same size into a compact unit with high performance.

MULTIPLEX CONNECTION

Page 122

The multiplex connection combines two or more OSP-P cylinders of the same size into one unit. The orientation of the carriers can be freely selected.

MAGNETIC SWITCHES TYPE RST, EST

Page 123-126

For electrical sensing of end and intermediate piston positions, also in EX-Areas.

MOUNTINGS FOR OSP-P10 UP TO P80

CLEVIS MOUNTING

Page 103-104

Carrier with tolerance and parallelism compensation for driving loads supported by external linear guides.

END CAP MOUNTING Page 105 For end-mounting of the cylinder.

MID-SECTION SUPPORT

Page 106 For supporting long cylinders or mounting the cylinder by its dovetail rails.

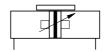
INVERSION MOUNTING

Page 117

The inversion mounting transfers the driving force to the opposite side, e. g. for dirty environments.

Cha	racteristics	Pressures quoted as gauge pressure						
Cha	racteristics	Symbol	Unit	Description				
Gen	eral Features							
Тур	e			Rodless cylinder				
Ser	ies			OSP-P				
Sys	tem			Double-acting, with cushioning, position sensing capability				
Μοι	unting			see drawings				
Air (Connection			Threaded				
Am rang	bient temperature ge	T _{min} T _{max}	°C ℃	- 10 other temperature ranges on + 80 request				
		- THER		In case of high temperature fluctuations - please contact our product support.				
Wei	ght (mass)		kg	see table below				
Inst	allation			In any position				
Me	dium			Filtered, unlubricated compressed air (other media on request)				
Lut	prication			Permanent grease lubrication (additional oil mist lubrication not required) Option: special slow speed grease				
	Cylinder profile			Anodized aluminium				
	Carrier (piston)			Anodized aluminium				
<u>a</u>	End caps			Aluminium, lacquered / Plastic (P10)				
Sealing bands				Corrosion resistant steel				
∑ Seals				NBR (Option: Viton®)				
Screws				Galvanized steel Option: stainless steel				
	Dust covers, wipers			Plastic				
Μ	ax. operating pressure	P _{max}	bar	8				

Weight (mass) [kg]								
Series (Basic cylinder)	Weight (mass) [kg]							
	at 0 mm stroke	per 100 mm stroke						
OSP-P10	0.087	0.052						
OSP-P16	0.22	0.1						
OSP-P25	0.65	0.197						
OSP-P32	1.44	0.354						
OSP-P40	1.95	0.415						
OSP-P50	3.53	0.566						
OSP-P63	6.41 0.925							
OSP-P80	12.46 1.262							


Size Comparison

Rodless Pneumatic Cylinder ø 10-80 mm

Series OSP-P..

Standard Versions:

- Double-acting with adjustable end cushioning
- With magnetic piston for position sensing

Long-Stroke Cylinders for stroke lengths up to 41 m

(see page 25-29)

Special Versions:

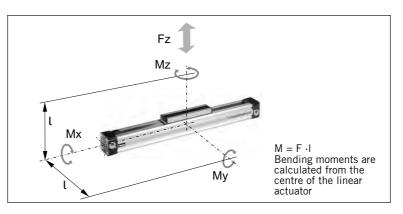
- with special pneumatical cushioning system (on request)
- Clean room cylinders (see page 31-34)
- ATEX-Version (Ex)
- (see page 35-36)
- Stainless steel screws
- Slow speed lubrication
- Viton® seals
- Both air connections on one end
- Air connection on the end-face
- Integrated Valves

• End cap can be rotated 4 x 90° to position air connection as desired • Free choice of stroke length up to 6000 mm, Long-Stroke version (Ø50-80mm) for stroke lengths up to 41 m

Loads, Forces and Moments

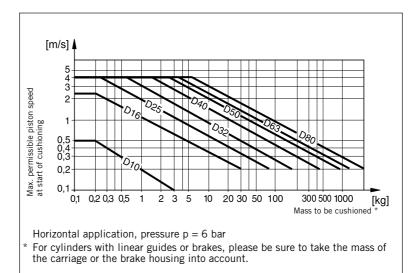
Choice of cylinder is decided by: • Permissible loads, forces and moments

• Performance of the pneumatic end cushions. The main factors here are the mass to be cushioned and the piston speed at start of cushioning (unless external cushioning is used, e. g. hydraulic shock absorbers).


The adjacent table shows the maximum values for light, shock-free operation, which must not be exceeded even in dynamic operation. Load and moment data are based on speeds $v \le 0.5$ m/s.

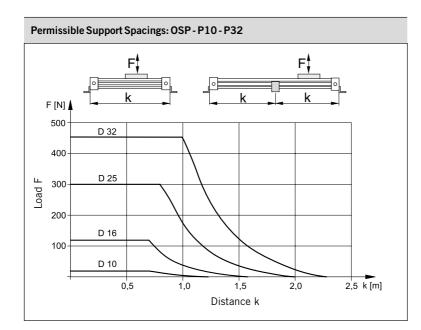
When working out the action force required, it is essential to take into account the friction forces generated by the specific application or load.

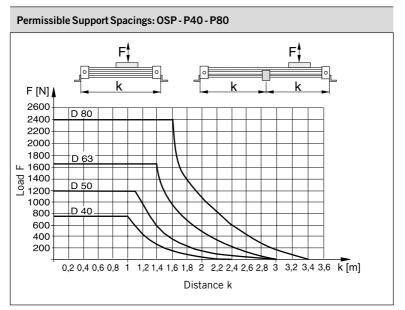
Cushioning Diagram


Work out your expected moving mass and read off the maximum permissible speed at start of cushioning. Alternatively, take your desired speed and expected mass and find the cylinder size required.

Please note that piston speed at start of cushioning is typically ca. 50 % higher than the average speed, and that it is this higher speed which determines the choice of cylinder. If these maximum permissible values are exceeded, additional shock absorbers must be used.

Cylinder- Series [mm Ø]	Theoretical Action Force at 6 bar [N]	effektive Action Force F _A at 6 bar [N]	max Mx [Nm]	k. Mome My [Nm]	max. Load F [N]	Cushion Length [mm]	
OSP-P10	47	32	0.2	1	0.3	20	2.5 *
OSP-P16	120	78	0.45	4	0.5	120	11
OSP-P25	295	250	1.5	15	3	300	17
OSP-P32	483	420	3	30	5	450	20
OSP-P40	754	640	6	60	8	750	27
OSP-P50	1178	1000	10	10 115 15		1200	30
OSP-P63	1870	1550	12	200	24	1650	32
OSP-P80	3016	2600	24	360	48	2400	39


* A rubber element (non-adjustable) is used for end cushioning. To deform the rubber element enough to reach the absolute end position would require a Δp of 4 bar!



If the permitted limit values are exceeded, either additional shock absorbers should be fitted in the area of the centre of gravity or you can consult us about our special cushioning system

- we shall be happy to advise you on your specific application.

Mid-Section Supports

To avoid excessive bending and oscillation of the cylinder, mid-section supports are required dependent on specified stroke lengths and applied loads. The diagrams show the maximum possible support spacings depending on the load. Bending up to max. 0.5 mm is permissible between supports. The midsection supports are clamped on to the dovetail profile of the cylinder tube. They are also able to take the axial forces. For types and dimensions

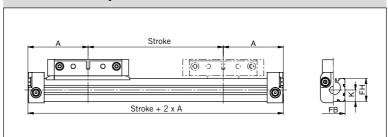
see page 106.

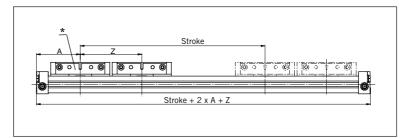
Cylinder Stroke and Dead Length A

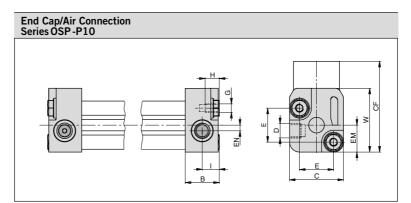
- Free choice of stroke length up to 6000 mm in 1 mm steps.
- Longer strokes on request

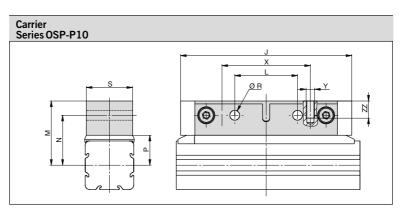
Tandem Cylinder

Two pistons are fitted: dimension "Z" is optional. (Please note minimum distance "Zmin").

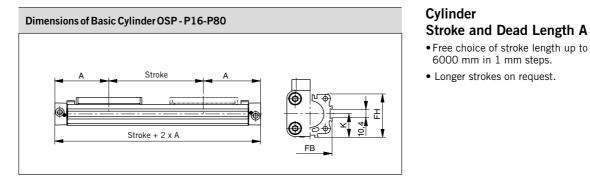

- Free choice of stroke length up to 6000 mm in 1 mm steps
- Longer strokes on request
- Stroke length to order is stroke + dimension "Z"

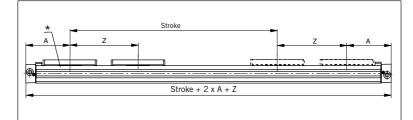

Please note:

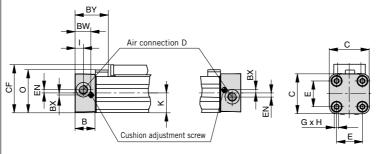

To avoid multiple actuation of magnetic switches, the second piston is not equipped with magnets.

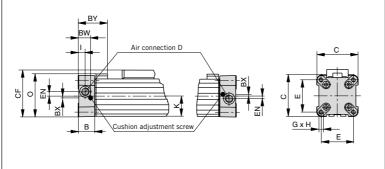

* Piston with magnet

Dimensions of Basic Cylinder OSP-P10






Dimension	Dimension Table [mm]																									
Series	A	В	C	D	E	G	Н	I	J	К	L	М	N	Р	R	S	W	X	Y	Z _{min}	CF	EM	EN	FB	FH	ZZ
OSP-P10	44.5	12	19	M5	12	М3	5	6	60	8.5	22	22.5	17.5	10.5	3.4	16	22.5	31	М3	64	32	9.5	2	17	17	6

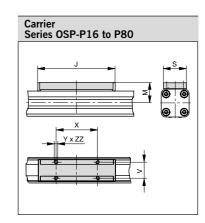


End Cap/Air Connection can be rotated 4 x 90° Series OSP-P16 to P32

End Cap/Air Connection can be rotated 4 x 90° Series OSP-P40 to P80

Tandem Cylinder

6000 mm in 1 mm steps.


Two pistons are fitted: dimension "Z" is optional. (Please note minimum distance "Zmin").

- Free choice of stroke length up to 6000 mm in 1 mm steps
- Longer strokes on request
- Stroke length to order is stroke + dimension "Z"

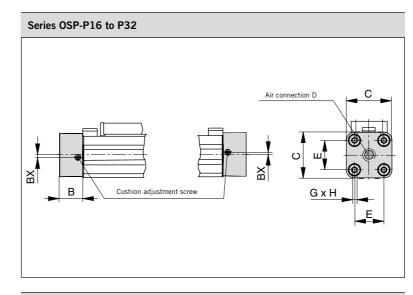
Please note:

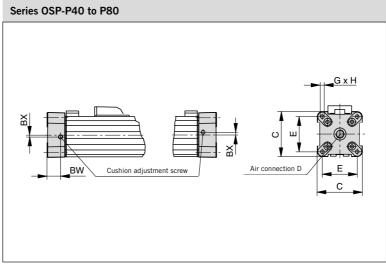
To avoid multiple actuation of magnetic switches, the second piston is not equipped with magnets.

* Piston with magnet

The right to introduce technical modifications is reserved

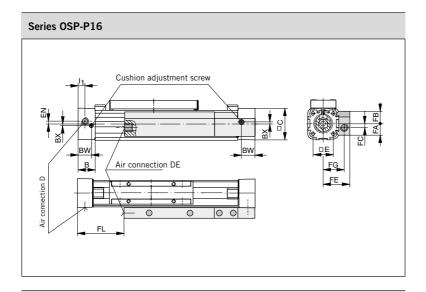
Dimension	Table	[mm]
-----------	-------	------


Iau	e liii																							
Α	В	C	D	Ε	G	Η	I	l	K	М	0	S	۷	X	Y	\mathbf{Z}_{\min}	BW	BX	BY	CF	EN	FB	FH	ZZ
65	14	30	M5	18	M3	9	5.5	69	15	23	33.2	22	16.5	36	M4	81	10.8	1.8	28.4	38	3	30	27.2	7
100	22	41	G1/8	27	M5	15	9	117	21.5	31	47	33	25	65	M5	128	17.5	2.2	40	52.5	3.6	40	39.5	8
125	25.5	52	G1/4	36	M6	15	11.5	152	28.5	38	59	36	27	90	M6	170	20.5	2.5	44	66.5	5.5	52	51.7	10
150	28	69	G1/4	54	M6	15	12	152	34	44	72	36	27	90	M6	212	21	3	54	78.5	7.5	62	63	10
175	33	87	G1/4	70	M6	15	14.5	200	43	49	86	36	27	110	M6	251	27	-	59	92.5	11	76	77	10
215	38	106	G3/8	78	M8	21	14.5	256	54	63	107	50	34	140	M8	313	30	-	64	117	12	96	96	16
260	47	132	G1/2	96	M10	25	22	348	67	80	133	52	36	190	M10	384	37.5	-	73	147	16.5	122	122	20
	A 65 100 125 150 175 215	A B 65 14 100 22 125 25.5 150 28 175 33 215 38	65 14 30 100 22 41 125 25.5 52 150 28 69 175 33 87 215 38 106	A B C D 65 14 30 M5 100 22 41 G1/8 125 25.5 52 G1/4 150 28 69 G1/4 175 33 87 G1/4 215 38 106 G3/8	A B C D E 65 14 30 M5 18 100 22 41 G1/8 27 125 25.5 52 G1/4 36 150 28 69 G1/4 54 175 33 87 G1/4 70 215 38 106 G3/8 78	A B C D E G 65 14 30 M5 18 M3 100 22 41 G1/8 27 M5 125 25.5 52 G1/4 36 M6 150 28 69 G1/4 54 M6 175 33 87 G1/4 70 M6 215 38 106 G3/8 78 M8	A B C D E G H 65 14 30 M5 18 M3 9 100 22 41 G1/8 27 M5 15 125 25.5 52 G1/4 36 M6 15 150 28 69 G1/4 54 M6 15 175 33 87 G1/4 70 M6 15 215 38 106 G3/8 78 M8 21	A B C D E G H I 65 14 30 M5 18 M3 9 5.5 100 22 41 G1/8 27 M5 15 9 125 25.5 52 G1/4 36 M6 15 11.5 150 28 69 G1/4 54 M6 15 12 175 33 87 G1/4 70 M6 15 14.5 215 38 106 G3/8 78 M8 21 14.5	A B C D E G H I J 65 14 30 M5 18 M3 9 5.5 69 100 22 41 G1/8 27 M5 15 9 117 125 25.5 52 G1/4 36 M6 15 11.5 152 150 28 69 G1/4 54 M6 15 12 152 175 33 87 G1/4 70 M6 15 14.5 200 215 38 106 G3/8 78 M8 21 14.5 256	A B C D E G H I J K 65 14 30 M5 18 M3 9 5.5 69 15 100 22 41 G1/8 27 M5 15 9 117 21.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 150 28 69 G1/4 54 M6 15 12 152 34 175 33 87 G1/4 70 M6 15 14.5 200 43 215 38 106 G3/8 78 M8 21 14.5 256 54	A B C D E G H I J K M 65 14 30 M5 18 M3 9 5.5 69 15 23 100 22 41 G1/8 27 M5 15 9 117 21.5 31 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 150 28 69 G1/4 54 M6 15 12 152 34 44 175 33 87 G1/4 70 M6 15 14.5 200 43 49 215 38 106 G3/8 78 M8 21 14.5 256 54 63	A B C D E G H I J K M O 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 150 28 69 G1/4 54 M6 15 12 152 34 44 72 175 33 87 G1/4 70 M6 15 14.5 200 43 49 86 215 38 106 G3/8 78 M8 21 14.5 256 54 63 107	A B C D E G H I J K M O S 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 175 33 87 G1/4 70 M6 15 14.5 200 43 49 86 36 215 38 106 G3/8 78 M8 21 14.5 256 54 63 107 50 <th>A B C D E G H I J K M O S V 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 175 33 87 G1/4 70 M6 15 14.5 200 43 49 86 36 27 175 38 106 G3/8 78 M8 21 14.5 256 54 63</th> <th>A B C D E G H I J K M O S V X 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 175 33 87 G1/4 70 M6 15 14.5 200 43 49 86 36 27 110 215 38 106 G3/8 78</th> <th>A B C D E G H I J K M O S V X Y 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 175 33 87 G1/4 70 M6 15 14.5 200 43 49 86 36 27 110 M6 <!--</th--><th>A B C D E G H I J K M O S V X Y Zmin 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 175 33 87 G1/4 70 M6 15 14.5 200 43 49</th><th>A B C D E G H I J K M O S V X Y Zmin BW 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 21 175 33 87 G1/4 70 M6</th><th>A B C D E G H I J K M O S V X Y Zmin BW BX 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 21 3 175</th><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212<!--</th--><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 3</th><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 150 28 69 G1/4 54 M6 15 12.5 <td< th=""><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 30 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 150 28 69 G1/4 5</th><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB FH 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 02 27.2 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 39.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 51.7 150</th></td<></th></th></th>	A B C D E G H I J K M O S V 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 175 33 87 G1/4 70 M6 15 14.5 200 43 49 86 36 27 175 38 106 G3/8 78 M8 21 14.5 256 54 63	A B C D E G H I J K M O S V X 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 175 33 87 G1/4 70 M6 15 14.5 200 43 49 86 36 27 110 215 38 106 G3/8 78	A B C D E G H I J K M O S V X Y 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 175 33 87 G1/4 70 M6 15 14.5 200 43 49 86 36 27 110 M6 </th <th>A B C D E G H I J K M O S V X Y Zmin 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 175 33 87 G1/4 70 M6 15 14.5 200 43 49</th> <th>A B C D E G H I J K M O S V X Y Zmin BW 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 21 175 33 87 G1/4 70 M6</th> <th>A B C D E G H I J K M O S V X Y Zmin BW BX 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 21 3 175</th> <th>A B C D E G H I J K M O S V X Y Zmin BW BX BY 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212<!--</th--><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 3</th><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 150 28 69 G1/4 54 M6 15 12.5 <td< th=""><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 30 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 150 28 69 G1/4 5</th><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB FH 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 02 27.2 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 39.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 51.7 150</th></td<></th></th>	A B C D E G H I J K M O S V X Y Zmin 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 175 33 87 G1/4 70 M6 15 14.5 200 43 49	A B C D E G H I J K M O S V X Y Zmin BW 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 21 175 33 87 G1/4 70 M6	A B C D E G H I J K M O S V X Y Zmin BW BX 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 21 3 175	A B C D E G H I J K M O S V X Y Zmin BW BX BY 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 150 28 69 G1/4 54 M6 15 12 152 34 44 72 36 27 90 M6 212 </th <th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 3</th> <th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 150 28 69 G1/4 54 M6 15 12.5 <td< th=""><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 30 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 150 28 69 G1/4 5</th><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB FH 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 02 27.2 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 39.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 51.7 150</th></td<></th>	A B C D E G H I J K M O S V X Y Zmin BW BX BY CF 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 150 28 69 G1/4 54 M6 15 12 152 34 44 72 3	A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 150 28 69 G1/4 54 M6 15 12.5 <td< th=""><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 30 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 150 28 69 G1/4 5</th><th>A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB FH 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 02 27.2 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 39.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 51.7 150</th></td<>	A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 30 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 150 28 69 G1/4 5	A B C D E G H I J K M O S V X Y Zmin BW BX BY CF EN FB FH 65 14 30 M5 18 M3 9 5.5 69 15 23 33.2 22 16.5 36 M4 81 10.8 1.8 28.4 38 3 02 27.2 100 22 41 G1/8 27 M5 15 9 117 21.5 31 47 33 25 65 M5 128 17.5 2.2 40 52.5 3.6 40 39.5 125 25.5 52 G1/4 36 M6 15 11.5 152 28.5 38 59 36 27 90 M6 170 20.5 2.5 44 66.5 5.5 52 51.7 150



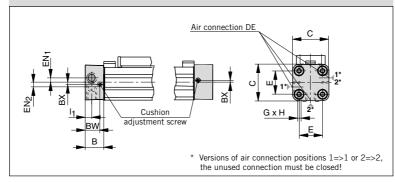
Air Connection on the End-face

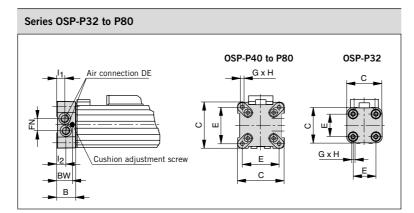
In some situations it is necessary or desirable to fit a special end cap with the air connection on the end-face instead of the standard end cap with the air connection on the side. The special end cap can also be rotated $4 \times 90^{\circ}$ to locate the cushion adjustment screw as desired. Supplied in pairs.



Dimension Table [mm]									
Series	В	С	D	E	G	Н	BX	BW	
OSP-P16	14	30	M5	18	М3	9	1.8	10.8	
OSP-P25	22	41	G1/8	27	M5	15	2.2	17.5	
OSP-P32	25.5	52	G1/4	36	M6	15	2.5	20.5	
OSP-P40	28	69	G1/4	54	M6	15	3	21	
OSP-P50	33	87	G1/4	70	M6	15	-	27	
OSP-P63	38	106	G3/8	78	M8	21	-	30	
OSP-P80	47	132	G1/2	96	M10	25	-	37.5	

Both Air Connections at One End


A special end cap with both air connections on one side is available for situations where shortage of space, simplicity of installation or the nature of the process make it desirable. Air supply to the other end is via internal air passages (OSP-P25 to P80) or via a hollow aluminium profile fitted externally (OSP-P16).


In this case the end caps cannot be rotated.

Please note: When combining the OSP-P16 single end porting with inversion mountings, RS magnetic switches can only be mounted directly opposite to the external air-supply profile.

The right to introduce technical modifications is reserved

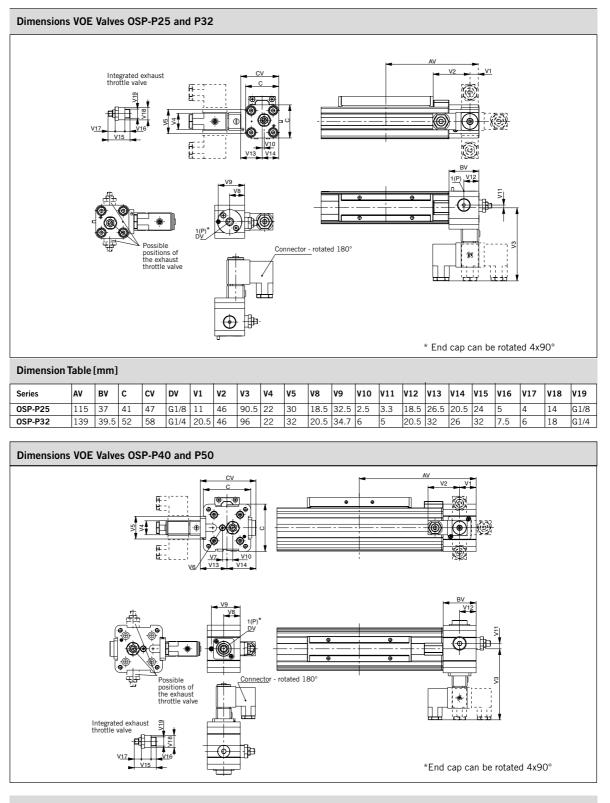
Series	В	C	E	G	н	I ₁	I ₂	BX	BW	DE	EN	EN ₁	EN ₂	FA	FB	FC	FE	FG	FL	FN
OSP-P16	14	30	18	M3	9	5.5	-	1.8	10.8	M5	3	-	-	12.6	12.6	4	27	21	36	-
OSP-P25	22	41	27	M5	15	9	-	2.2	17.5	G1/8	-	3.6	3.9	-	-	-	-	-	-	-
OSP-P32	25.5	52	36	M6	15	12.2	10.5	-	20.5	G1/8	-	-	-	-	-	-	-	-	-	15.2
OSP-P40	28	69	54	M6	15	12	12	-	21	G1/8	-	-	-	-	-	-	-	-	-	17
OSP-P50	33	87	70	M6	15	14.5	14.5	-	27	G1/4	-	-	-	-	-	-	-	-	-	22
OSP-P63	38	106	78	M8	21	16.5	13.5	-	30	G3/8	-	-	-	-	-	-	-	-	-	25
OSP-P80	47	132	96	M10	25	22	17	-	37.5	G1/2	-	-	-	-	-	-	-	-	-	34.

Integrated 3/2 Way Valves VOE

For optimal control of the OSP-P cylinder, 3/2 way valves integrated into the cylinder's end caps can be used as a compact and complete solution. They allow for easy positioning of the cylinder, smooth operation at the lowest speeds and fast response, making them ideally suited for the direct control of production and automation processes.

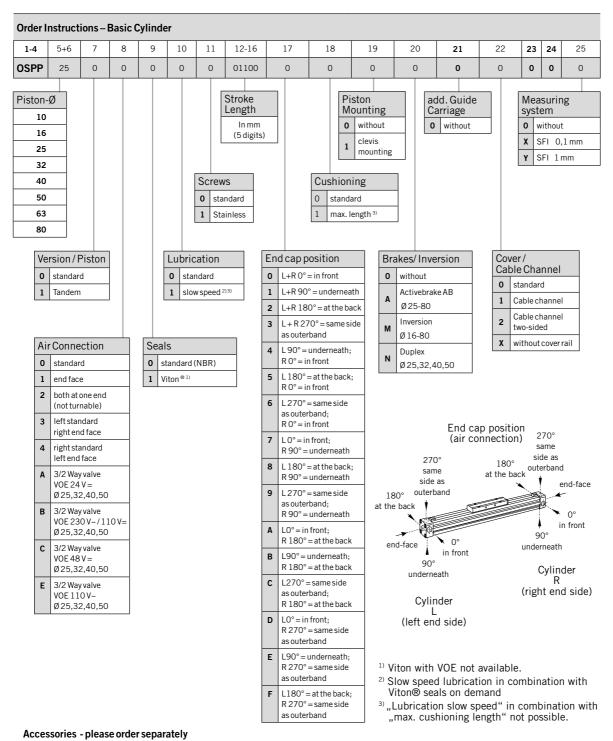
Characteristics:

- Complete compact solution
- Various connection possibilities:Free choice of air connection with
- rotating end caps with VOE valves,
 Air connection can be rotated 4 x 90°,
- Solenoid can be rotated 4 x 90°, Pilot valve can be rotated 180°
- High piston velocities can be achieved with max. 3 exhaust ports
- Minimal installation requirements
 Requires just one air connection
- Optimal control of the OSP-P
- cylinder
- Excellent positioning characteristics
- Integrated operation indicator
- Integrated exhaust throttle valve
- Manual override indexed
- Adjustable end cushioning
- Easily retrofitted please note the increase in the overall length of the cylinder!



Characteristics 3/2 W	ay Valves VOE						
Characteristics	3/2 Way Valve	es with spring r	eturn				
Pneumatic diagram		2 (A) (P) *3 (R)		2 (A) (P) *3 (R)			
Туре	VOE-25	VOE-32	VOE-40	VOE-50			
Actuation		electric	cal				
Basic position	$P \rightarrow A$ open, R closed						
Туре		Poppet valve,	non overlappir	וg			
Mounting		integrated in	n end cap				
Installation		in any pos	sition				
Port size	G 1/8	G 1/4	G 3/8	G 3/8			
Temperature		-10°C to +	50°C *				
Operating pressure		2-8 ba	ar				
Nominal voltage	24 V DC / 230 V AC, 50 Hz						
Power consumption	n 2,5 W / 6 VA						
Duty cycle		100%	0				
Electrical Protection	n IP 65 DIN 40050						

* other temperature ranges on request

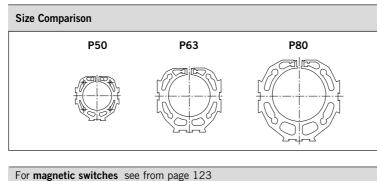


Dimension Table [mm]

The right to introduce technical modifications is reserved

OSP-P40 170 48 69 81 G3/8 24 46 103 22 33 M5 6.7 24 42 8.3 8.3 24 39 42 32 7.5 6	18 GI	G1/4
OSP-P50 190 48 87 82 G3/8 24 46 102 22 33 M5 4.5 24 42 12.2 12.4 38 44 32 7.5 6	18 G1	G1/4

Description Further information see **End Cap Mountings** Page 105 Mid-Section Support Page 106 Adaptor Profile Page 118 T-Slot Profile Page 119 **Connection Profile** Page 120 Multiplex Connection Page 122 Page 123-126 Magnetic Switches



Chara	octeristics			Pressures quoted as gauge pressure
Chara	octeristics	Symbol	Unit	Description
Gene	ral Features			
Туре				Rodless cylinder
Series	S			OSP-P
Syste	m			Double-acting, with cushioning, position sensing capability
Moun	ting			See drawings
Air Co	onnection			Threaded
Ambi tempo range	erature	T T _{max}	℃ ℃	+10 Other temperature ranges +40 on request
Weigh	nt (mass)		kg	See table below
Instal	llation			vertical, horizontal (piston at top or at bottom)
Mediu	Medium			Filtered, unlubricated compressed air (other media on request)
Lubri	cation			Permanent grease lubrication (additional oil mist lubrication not required) Option: special slow speed grease
	Cylinder Profile			Anodized aluminium
	Carrier (piston)			Anodized aluminium
	End caps			Anodized aluminium
Material	Sealing bands			Corrosion resistant steel
Mat	Seals			NBR (Option: Viton®)
	Screws			Galvanized steel Option: stainless steel
	Dust covers, wipers			Plastic
Max.c	operating pressure	P _{max}	bar	8
Max.s	speed	v	m/s	2

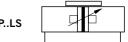
Weight (mass) [kg]

Series	Weight (n	nass) [kg]
(Basic cylinder)	At 0 mm stroke	per 100 mm stroke
OSP-P50LS	3,53	0,566
OSP-P63LS	6,41	0,925
OSP-P80LS	12,46	1,262

The right to introduce technical modifications is reserved

For magnetic switches see from page 123 Accessories see from page 101

Rodless Pneumatic Cylinder Ø 50-80 mm



Long-Stroke Cylinder

for strokes up to 41 m

Series OSP-P..LS

Standard Versions:

- Double-acting with adjustable end cushioning
- With magnetic piston for position sensing

Special Versions:

- Stainless steel screws
- Slow speed lubrication
- Viton® seals

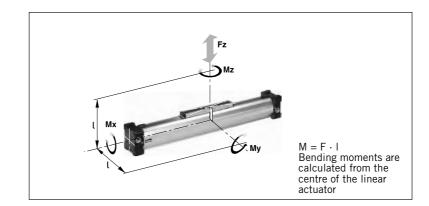
Options:

- Displacement measuring system SFI-plus
- Active Brake AB..

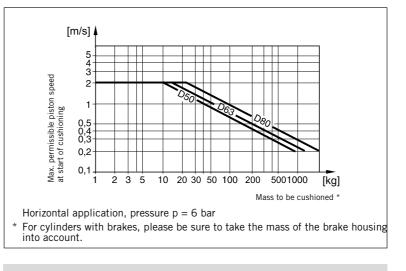
Loads, Forces and Moments

Choice of cylinder is decided by: • permissible loads, forces and moments

 performance of the pneumatic end cushions. The main factors here are the mass to be cushioned and the piston speed at start of cushioning (unless external cushioning is used, e. g. hydraulic shock absorbers).

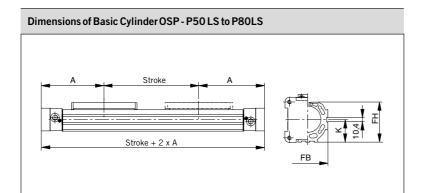

The adjacent table shows the maximum values for light, shock-free operation, which must not be exceeded even in dynamic operation. Load and moment data are based on speeds $v \le 0.5$ m/s.

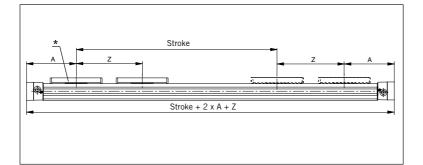
When working out the action force required, it is essential to take into account the friction forces generated by the specific application or load.


Cushioning Diagram

Work out your expected moving mass and read off the maximum permissible speed at start of cushioning. Alternatively, take your desired speed and expected mass and find the cylinder size required.

Please note that piston speed at start of cushioning is typically ca. 50 % higher than the average speed, and that it is this higher speed which determines the choice of cylinder. If these maximum permissible values are exceeded, additional shock absorbers must be used.



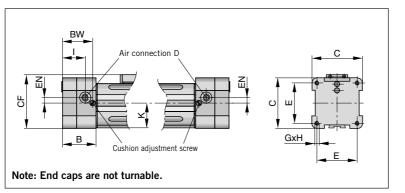

Series [mm Ø]	Theoretical Action Force at 6 bar [N]	effektive Action Force F _A at 6 bar [N]	max. N Mx [Nm]	loments My [Nm]	Mz [Nm]	max. Load F [N]	Cushion Length [mm]
OSP-P50LS	1178	1000	10	115	15	1200	30
OSP-P63LS	1870	1550	12	200	24	1650	32
OSP-P80LS	3016	2600	24	360	48	2400	39

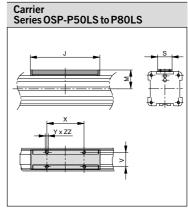
If the permitted limit values are exceeded, additional shock absorbers should be fitted in the area of the centre of gravity .

Cylinder Stroke and Dead Length A

• Free choice of stroke length up to 41.000 mm in 1 mm steps

Tandem Cylinder


Two pistons are fitted: dimension "Z" is optional. (Please note minimum distance "Zmin").


- Free choice of stroke length up to 41.000 mm in 1 mm steps
- Stroke length to order is stroke + dimension "Z"

Please note:

To avoid multiple actuation of magnetic switches, the second piston is not equipped with magnets.

* Piston with magnet

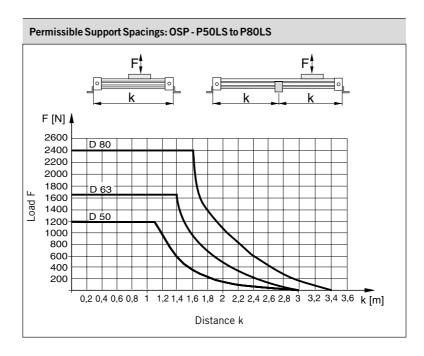
Dimension Table [mm]

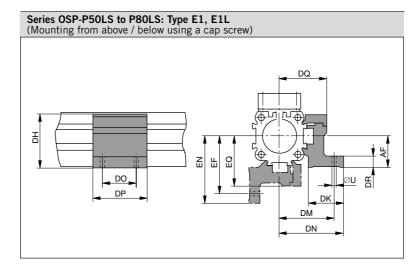
Series	Α	В	С	D	E	G	Н	I	J	К	м	S	V	X	Y	\mathbf{Z}_{\min}	BW	CF	EN	FB	FH	ZZ
OSP-P50LS	200	58	87	G1/4	70	M6	15	39.5	200	43	49	36	27	110	M6	251	52	92.5	10	76	77	10
OSP-P63LS	250	73	106	G3/8	78	M8	21	49.5	256	54	63	50	34	140	M8	313	65	117	12	96	96	16
OSP-P80LS	295	82	132	G1/2	96	M10	25	57	348	67	80	52	36	190	M10	384	72.5	147	16.5	122	122	20

Linear Drive Accessories

Ø 50-80 mm Mid-Section Support E1, E1L

For linear drive • Series OSP-P..LS


Note on Types E1 and E1L (P50LS – P80LS):


The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the centre of the actuator is different.

For mounting the Long-Stroke cylinder, a mid-section support Type E1 (fixed support) is required. Depending on the stroke length and the load, additional E1L supports (movable supports) may be required.

For permissible support spacings see diagram.

Stainless steel version on request.

Dimension Table [mm] Series OSP-P50LS to P80LS										
Series	R	U	AF	DF	DH	DK	DM	DN	DO	DP
OSP-P50LS	M6	7	48	40	71	34	59	67	45	60
OSP-P63LS	M8	9	57	47.5	91	44	73	83	45	65
OSP-P80LS	M10	11	72	60	111.5	63	97	112	55	80

Series	DQ	DR	DT	EF	ЕМ	EN	EQ	Order No. Type E1 fixed support	Order No. Type E1L movable support
OSP-P50LS	5 2	10	11	64	45	72	57	20163FIL	21352FIL
OSP-P63LS	i 63	12	16	79	53.5	89	69	20452FIL	21353FIL
OSP-P80LS	81	15	25	103	66	118	87	20482FIL	21354FIL

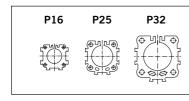
Order Instructions – Long-Stroke Cylinder

Note:

Assembly and commissioning of the Long-Stroke cylinder is carried out on site by ORIGA technical personnel. For more information on ordering and installation please contact your sales or customer service partner.

Accessories - please order separately

Description	Further information see
Clevis Mounting	Page 104
End Cap Mountings	Page 105
Mid-Section Support	Page 28
Inversion Mounting	Page 117
Adaptor Profile	Page 118
T-Slot Profile	Page 119
Connection Profile	Page 120
Magnetic Switches	Page 123-126
Cable Cover	Page 127


Cha	racteristics			Pressure quoted as gauge pressure				
Ch	aracteristics	Symbol	Unit	Description				
Gen	eral features							
Туре				Rodless cylinder				
Series				OSP-P				
System				doppeltwirkend mit Dämpfung, für berührungslose Positionserfas- sung				
Mounting				see drawings				
Airconnection				Gewinde				
Ambient and medium temperature range		T _{min} T _{max}	2° 2°	- 10 + 80	other temperatures ranges on request			
				In case of high temperature fluctuations - please contact our product support				
Weight (mass)			kg	see table below				
Installation				in any position				
Medium				Filtered, unlubricated compresse (other media on request)				
Lubrication				Permanent grease lubrication (additional oil mist lubrication not required) Option: special slow speed grease				
	Cylinder profile			Anodiz	ed aluminium			
	Carrier (piston)			Anodized aluminium				
Material	End caps			Aluminium, lacquered				
	Sealing bands			Corros	ion resistant steel			
	Seals			NBR (Option: Viton®)			
	Screws			Stainle	ess steel			
	Covers			Anodiz	ed aluminium			
Ì	Guide plate			Plastic				
Max. operating pressure*		P _{max}	bar	8				

*Pressure quoted as gauge pressure

Weight (mass) [kg]									
Series	Weight (mass) [kg]								
(basic cylinder)	at 0 mm stroke	per 100 mm stroke							
OSP-P16	0.22	0.1							
OSP-P25	0.65	0.197							
OSP-P32	1.44	0.354							

Size Comparison

The right to introduce technical modifications is reserved

For magnetic switches see from page 123 For mountings and accessories see from page 101-122

31

Clean Room Cylinder ø 16 – 32 mm

Rodless Cylinder

certified to **DIN EN ISO 14644-1**

Standard Versions:

- Double-acting with adjustable end cushioning
- With magnetic piston for position sensing
- Stainless steel screws

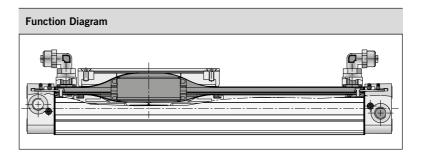
Special Versions:

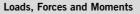
- Slow speed lubrication
- Viton® seals

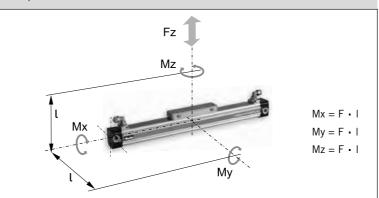
Series OSP-P..

Features:

- Clean room classification
- ISO Class 4 at $v_m = 0.14$ m/s ISO Class 5 at $v_m = 0.5$ m/s suitable for smooth slow speed operation up to $v_{min} = 0.005$ m/s
- optional stroke length up to 1200 mm (longer strokes on request)
- Low maintenance • Compact design with equal force
- and velocity in both directions
- Aluminium piston with bearing rings to support high direct and cantilever loads

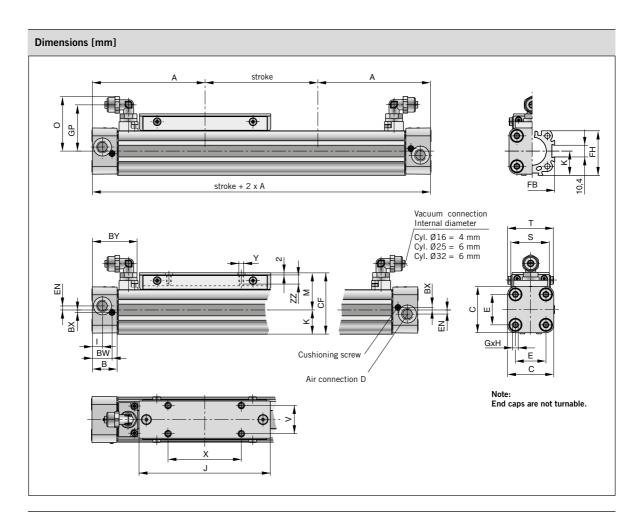

Certification


Based on the Parker Origa rodless cylinder, proven in world wide markets, Parker Origa now offers the only rodless cylinder on the market with a certification from IPA Institute for the cleanroom specification according to DIN EN ISO 14644-1.



Function:

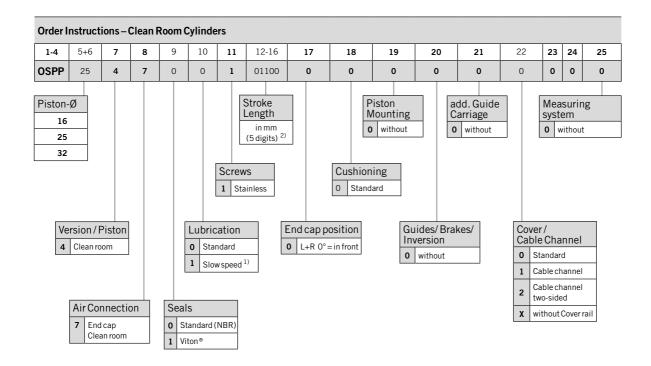
The clean room cylinders of the ORIGA SYSTEM PLUS (OSP-P) combines the efficiency of the Parker Origa slot seal system with vacuum protection against progressive wear and contamination from the sliding components. A partial vacuum drawn between inner and outer sealing bands prevents emission into the clean room. To achieve the necessary vacuum a suction flow of ca. 4 m³/h is required.



Series	Effective Force at 6 bar [N]	Max. Mom Mx [Nm]		Mz[Nm]	Max. Load Fz [N]	Cushion Length [mm]	
OSP-P16	78	0.45	4	0.5	120	11	
OSP-P25	250	1.5	15	3.0	300	17	
OSP-P32	420	3.0	30	5.0	450	20	

Load and moment data are based on speeds v \leq 0.2 m/s.

The adjacent table shows the maximum values for light, shock-free operation which must not be exceeded even in dynamic operation.



Series A B C D E G H		1				Dimension Table [mm]										
	1	J	к	м	0	s										
OSP-P16 65 14 30 M5 18 M3 9	5.5	69	15	25	31	24										
OSP-P25 100 22 41 G1/8 27 M5 15	9	117	21.5	33	48.5	35										
OSP-P32 125 25.5 52 G1/4 36 M6 15	11.5	152	28.5	40	53.6	38										

Series	Т	V	X	Y	BW	BX	BY	CF	EN	FB	FH	GP	ZZ
OSP-P16	29.6	16.5	36	M4	10.8	1.8	28.5	40	3	30	27.2	25.7	7
OSP-P25	40.6	25	65	M5	17.5	2.2	40.5	54.5	3.6	40	39.5	41	8
OSP-P32	45	27	90	M6	20.5	2.5	47.1	68.5	5.5	52	51.7	46.2	10

 $^{\scriptscriptstyle 1)}$ The combination "Slow speed lubrication" and "Viton® sealings" are available on request.

 $^{\scriptscriptstyle 2)}$ max. stroke lengths 1200 mm, longer strokes on request.

Accessories - please order separately

Description	Further information see
End Cap Mountings	Page 105
Mid-Section Support	Page 106
Adaptor Profile	Page 118
T-Slot Profile	Page 119
Connection Profile	Page 120
Magnetic Switches	Page 123-126

Information for ATEX-Directives

The rodless pneumatic cylinders of Parker Origa are the first linear drive unit, for that Ex range in the group of equipment II, Category 2 GD are certified. Detailed information for use pneumatic components in Ex-Areas see leaflet PDE2584TCUK "EU Directive 2014/34/EU for Pneumatic Components".

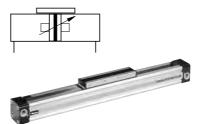
Components for EX-Areas

Technical Data (deviant to the Standard Cylinder)									
			Pressure quoted as gauge pressure						
Characteristics	Symbol	Unit	Description						
Ambient temperature range	T _{min} T _{max}	°C °C	-10 +60						
Max.switching frequency		Hz	1 (double stroke/s) Basic cylinder 0.5 (1stroke/s) Cylinder with guide						
Operating pressure range	P _{max}	bar	8						
Max. speed	V _{max}	m/s	3 (Basic cylinder) 2 (Cylinder with guide SLIDELINE and cylinder with guide BASIC GUIDE)						
Medium			Filtered, unlibricated compressed air – free from water and dirt to ISO 8573-1 Solids: Class 7 particle size < 40 µm for Gas Water content: pressure dew point +3 °C, class 4, but at least 5 °C below minimum operating temperature						
Noise level		dB(A)	70						
Information for materials			Aluminium: see data sheet "Material"						
			Lubrication: see security data sheet "Grease for use in Cylinder with guides"						

 For all other details for dimensions, weights, allowable loads, cushioning diagrams and accessories see data sheets in this catalogue.

Equipment Group	Equipment Group II Categorie 2GD									
Rodless cylinder: II 2GD c T4 T135°C -10°C≤Ta≤+60°C										
Series	Size	Stroke range	Accessories							
OSP-P	Ø10to80 1-6000mm		Mountings programme							
BASICGUIDE	Ø 25 to 50	1-6000 mm	Mountings programme							
SLIDELINE	Ø16to80	1-5500 mm	Mountings programme							

For basic cylinder see page 15-24 For BASIC GUIDE see page 39-45 For plain bearing guide SLIDELINE see page 49-50 For mountings and accessories see page 101-120


Rodless Cylinder

ORIGA — SYSTEM

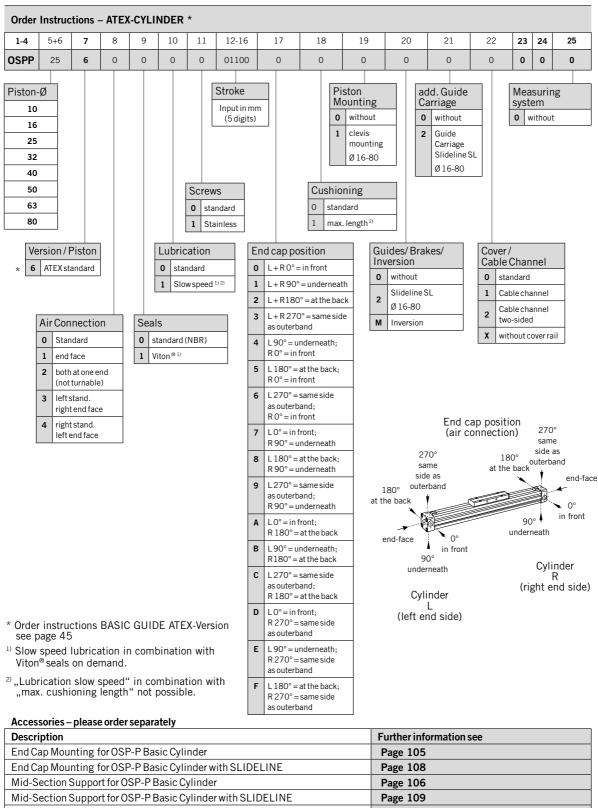
ø 10 – 80 mm

Basic Cylinder

Series: OSP-P ..ATEX

BASIC GUIDE ø 25 – 50 mm

Series: BG -..ATEX



Plain Bearing Guide SLIDELINE ø 16 – 80 mm

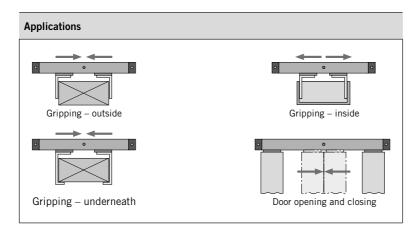
Series: SL -..ATEX

Characteristics			Pressure quoted as gauge pressure					
Characteristics	Symbol	Unit	Description					
General Features								
Туре			Rodless cylinder for synchronized bi-parting movements					
Series			OSP-P					
System			Double acting with end cushioning For contactless position sensing					
Guide			Slideline SL40					
Synchronization			Toothed belt					
Mounting			See drawings					
Ambient temperature range	T _{min} T _{max}	°C ℃	-10 +60					
Weight (mass)		kg	see page 38					
Medium			Filtered, unlubricated compressed air (other media on request)					
Lubrication			Special slow speed grease – additional oil mist lubrication not required					
Material								
Toothed Belt			Steel-corded polyurethane					
Beltwheel			Aluminium					
Operating pressure range	P _{max}	bar	6					
Cushioning middle position			Elastic buffer					
Max. Speed	V _{max}	m/s	0.2					
Max. stroke of each stroke		mm	500					
Max. mass per guide carrier		kg	25					
Max. moments on guide carrier								
lateral moment	Mx _{max}	Nm	25					
axial moment	My _{max}	Nm	46					
rotating moment	Mz _{max}	Nm	46					
For more technical info		e page 1	5-17,19 and 49-50					

Rodless Cylinder Ø 40 mm

for synchronized bi-parting movements

Type OSP-P40-SL-BP



Features:

- Accurate bi-parting movement through toothed belt synchronization
- Optimum slow speed performance
- Increased action force
- Anodized aluminium guide rail with prism-form slideway arrangement
- Adjustable polymer slide units
 Combined sealing system with polymer and felt elements to remove dirt and lubricate the slideway
- Integrated grease nipples for guide lubrication

Applications:

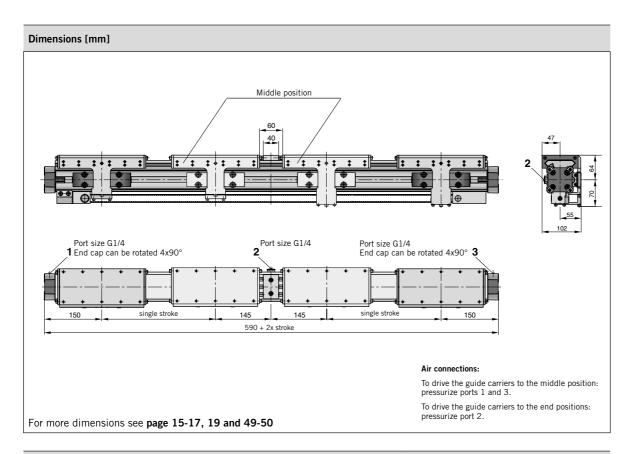
- Opening and closing operations
- Gripping of workpieces outside
- Gripping of hollow workpieces - inside
- Gripping underneath larger objects • Clamping force adjustable via
- pressure regulator

For Magnetic Switches see page 123-126

The right to introduce technical modifications is reserved

Weight (mass) [kg]		
Cylinder series (Basic cylinder)	Weight (r At 0 mm stroke	nass) [kg] per 100 mm stroke
		P
OSP-P40-SL-BP	10.33	2.13

Function:


The OSP-P40-SL-BP bidirectional linear drive is based on the OSP-P40 rodless pneumatic cylinder and adapted SLIDELINE SL40 polymer plainbearing guides.

Two pistons in the cylinder bore are connected via yokes and carriers to the SLIDELINE guide carriers, which handle the forces and moments generated.

The bi-parting movements of the guide carriers are accurately synchronized by a recirculating toothed belt.

The two pistons are driven from the middle to the end positions via a common G1/4 air connection in the middle of the cylinder, and are driven from the end positions to the middle via an air connection in each end cap.

End position cushioning is provided by adjustable air cushioning in the end caps, and middle position cushioning by rubber buffers.

Order Instructions		
Description	Туре	Order No. **
Rodless cylinder for synchronized bi-parting movements	OSP-P40-SL-BP	21315

Note: Order stroke = $2 \times single stroke$

** Please use this order pattern: Order-No. + "order stroke in mm" (5 digits)

Example: for single stroke 100 mm = order stroke 2x100 mm = 200 mm: 21315-00200

Cha	racteristics		Pressure quoted as gauge pressure					
Ch	aracteristics	Symbol	Unit	Descrip	otion			
Gen	ieral features							
Тур	е			Rodless Cylinder				
Ser	ies			OSPP-I	BG			
Sys	tem				-acting, with cushioning, sensing capability			
Μοι	unting			see dra	wings			
Airo	connection			Thread	ed			
	bient and medium perature range	T _{min} T _{max}	°C °C	- 10 + 80	other temperatures ranges or request			
				fluctua	e of high temperature itions e contact our product support			
Wei	ight (mass)		kg	see tab	ble below			
Inst	tallation			in any	position			
Me	dium				d, unlubricated compressed media on request)			
Lut	prication			(additi	nent grease lubrication onal oil mist lubrication not ed) Option: special slow speed			
	Cylinder profile			Anodiz	ed aluminium			
	Carrier (piston)			Anodiz	ed aluminium			
	End caps	ĺ		Al, cata	alytically coated			
erial	Sealing bands			Corrosi	ion resistant steel			
Materia	Seals			NBR (Option: Viton®)			
Screws					ess steel : stainless steel			
	Dust covers, wipers			Plastic				
Max	x. operating pressure*	P _{max}	bar	8				

Plain Bearing BASIC GUIDE

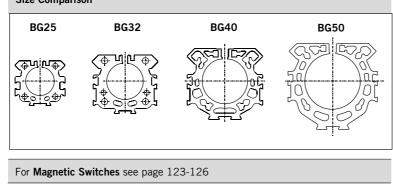
ø 25 - 50 mm

Series OSPP-BG

Standard Versions:

- Double-acting with adjustable end cushioning
- With magnetic piston for position sensing

Special Versions:


- Stainless steel screws
- Slow speed lubrication
- Viton® seals
- Both air connections on one end
- Air connection on the end-face
- Integrated Valves VOE

Weight (mass) [kg]

Weight (mass) [kg]							
at 0 mm stroke	per 100 mm stroke						
1.09	0.22						
2.26	0.38						
3.52	0.41						
5.30	0.58						
	at 0 mm stroke 1.09 2.26 3.52						

Size Comparison

- End cap can be rotated 4 x 90° to position air connection as desired
- Free choice of stroke length: BG25 and BG32 up to 9640 mm BG40 and BG50 up to 5600 mm

(longer strokes on request)

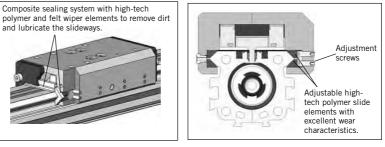
Plain Bearing BASIC GUIDE

Size BG 25 to 50 Compact, robust plain bearing guide for medium loads • Series OSP-P

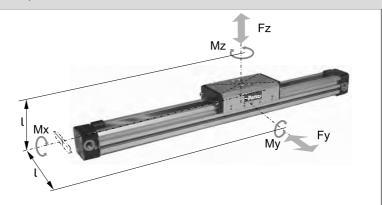
Features:

- Compact: guide rail integrated in cylinder profile tube
- Robust: wiper system and grease nipples for long service life
- smooth operation
- simple to (re-) adjust
- Integrated grease nipples
- Variable stroke length: BG25 and BG32 up to 9640 mm BG40 and BG50 up to 5600 mm (longer strokes on request)

Options:


- Corrosion resistant version available on request
- VOE-Valves
- ATEX-version $\langle \epsilon x \rangle$
- (see page 35-36)

Accessories:


- Mid-Section Support
- End Cap Mountings
- Magnetic Switches

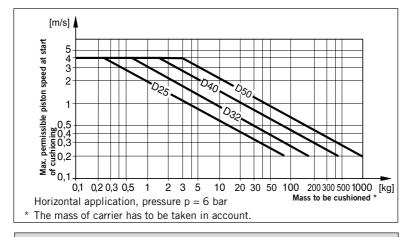
Loads, Forces and Moments

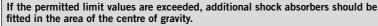
Technical Data

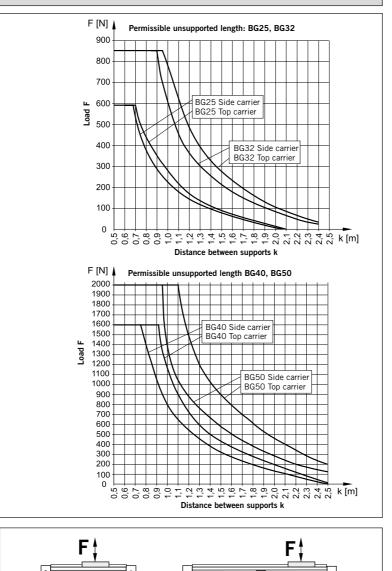
The table shows the maximum permissible values for smooth operation, which should not be exceeded even under dynamic conditions.

In the cushioning diagram, add the mass of the guide carriage to the mass to be cushioned.

$$\frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1$$


The load and moment gures apply to speeds v < 0.2 m/s.


The sum of the loads should not exceed 1.


Serie	s Ma	ax. Mo [Nm	nents]	Max. Load [Nm]		asic Guide (g]	Mass * of guide	Cushion Length
	M×	 My	Mz	Fy, Fz	at 0 mm stroke	per 100 mm stroke	carriage [kg]	[mm]
BG2	5 10	28	28	590	1.09	0.22	0.29	17
BG3	2 17	43	43	850	2.26	0.38	0.69	20
BG4	0 39	110	110	1600	3.52 0.41		1.37	27
BG5	0 67	16	5 165	2000	5.30	0.58	1.91	30

Mountings see page 44

The right to introduce technical modifications is reserved

Cushioning Diagram

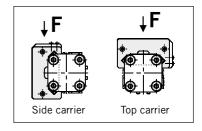
Work out your expected moving mass and read off the maximum permissible speed at start of cushioning. Alternatively, take your desired speed and expected mass and find the cylinder size required.

Please note that piston speed at start of cushioning is typically approx. 50 % higher than the average speed, and that it is this higher speed which determines the choice of cylinder.

Mid-Section Support

(Versions see page 44)

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive.

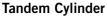

The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between

loading 1 and loading 2.

Deflection of 0.5 mm max. between supports is permissible.

Note:

For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.



k

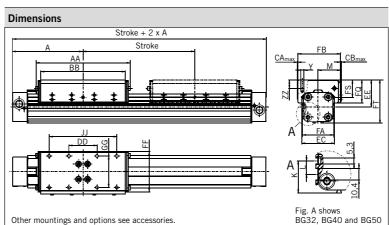
Cylinder Stroke and Dead Length A

• Variable stroke length in 1 mm steps: BG25 and BG32 up to 9640 mm BG40 and BG50 up to 5600 mm (longer strokes on request)

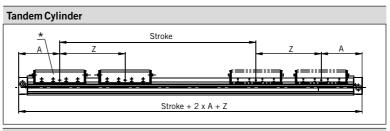
Two pistons are fitted: dimension "Z" is optional.

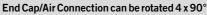
(Please note minimum distance Z_{min}).

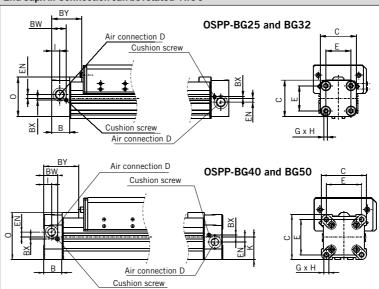
- Variable stroke length in 1 mm steps: BG25 and BG32 up to 9440 mm BG40 and BG50 up to 5300 mm (longer strokes on request)
- Stroke length to order is stroke + dimension "Z"

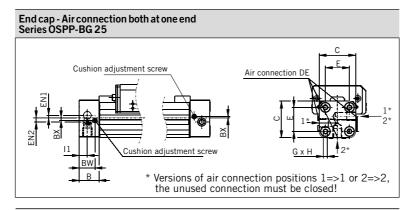

Please note:

To avoid multiple actuation of magnetic switches, the second piston is not equipped with magnets.


Standard air connection


End cap can be rotated 4 x 90°. The air connection and cushion screw can therefore be positioned as desired.


* piston with magnet



Dimensio	n Table	[mm]															
Series	Α	В	С	D	Е	G	н	I	к	L	м	0	Y	Z _{min}	AA	BB	BW
BG25	100	22	41	G1/8	27	M5	15	9	17.5	-	32	47	M6	128	126	108	17.5
BG32	125	25.5	52	G1/4	36	M6	15	11.5	28.5	12	40	59	M6	170	168	150	20.5
BG40	150	28	69	G1/4	54	M6	15	12	34.5	12	47	72	M6	212	198	178	21
BG50	175	33	87	G1/4	70	M6	15	14.5	43.5	12	54	86	M6	251	240	220	27
Series	вх	BY	CA _{max}	CB _{max}	DD	EC	EE	EN	FA	FB	FF	FQ	FS	FT	GG	11	ZZ
BG25	2.2	40	1.5	1.5	40	44	38	3.6	44	60	56	32	24	59.5	43	80	12
BG32	2.5	44	0	2	50	58	48	5.5	56	76	72	40.8	30.8	76.5	56	120	12
BG40	3	54	0	1	70	67	58	7.5	67	89	84	48	36	92.5	60	140	12
BG50	-	59	0	0	100	77.5	63	11	80	101	94	49	36	106.5	78	200	12

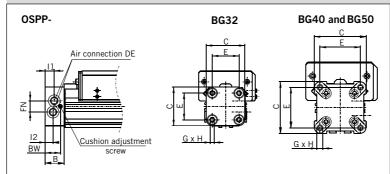
Both Air Connections at One End

A special end cap with both air connections on one side is available for situations where shortage of space, simplicity of installation or the nature of the process make it desirable.

Air supply to the other end is given via internal air passages.

In this case the end caps cannot be rotated.

End cap - Air connection both at one end Series OSPP-BG32 to BG50


End cap - Air connection on the End-face Series OSPP-BG25 to BG50

Cushion adjustment

screw

OSPP-

В

BG25 and BG32

Air Connection on the End-face

In some situations it is necessary or desirable to fit a special end cap with the air connection on the end-face instead of the standard end cap with the air connection on the side. The special end cap can also be rotated $4 \times 90^{\circ}$ to locate the cushion adjustment screw as desired.

Supplied in pairs.

Dimensi	Dimension Table [mm]														
Series	В	С	D	DE	Е	G	Н	BW	BX	BY	EN1	EN2	FN	11	12
BG25	22	41	G1/8	G1/8	27	M5	15	17.5	2.2	40	3.6	3.9	-	9	-
BG32	25.5	52	G1/4	G1/8	36	M6	15	20.5	2.5	44	-	-	15.2	12.2	10.5
BG40	28	69	G1/4	G1/8	54	M6	15	21	3	54	-	-	17	12	12
BG50	33	87	G1/4	G1/4	70	M6	15	27	-	59	-	-	22	14.5	14.5

Air connection D

Air connection D

BG40 and BG50

The right to introduce technical modifications is reserved

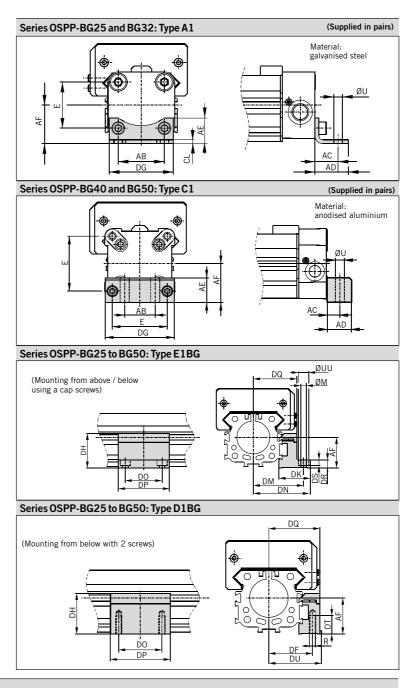
Linear Drive Accessories ø 25-50 mm

End Cap Mountings

For linear drive • Series OSPP-BG

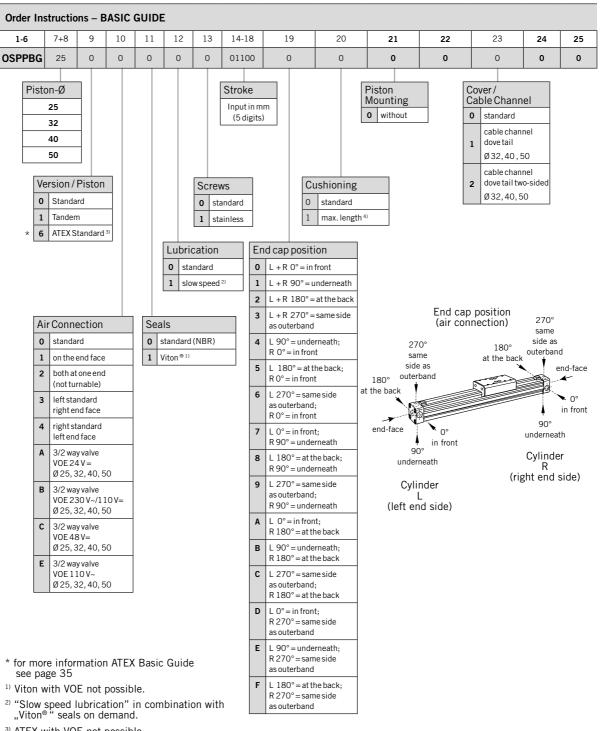
On the end-face of each cylinder end cap there are four threaded holes for mounting the cylinder. The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.

The air connection can still be positioned as desired.


Mid-Section Support

For linear drive • Series OSPP-BG

For permissible support spacings see diagram page 41.


Stainless steel version on request.

Dimens	imension Table [mm]																		
Series	E		R	Ø	ðU	ØN	1	AB AC		AD		AE	AF	0	CL	DF		DG	
BG25	27	7	M5	5	5.8	5.5	5	27		16	22	2	18	22	2	2.5	29		39
BG32	36	5	M5	6	5.6	5.5	5	36		18	26	5	20	30		3	36.	5	50
BG40	54	1	M6		9	7		30	1	12.5 24		24	38		-	39		68	
BG50	70		M6		9	7		40	1	2.5	24		30	48	48 -		45.5	5	86
													Ident-No.						
Series	DH	DK	DM	DN	DO	DP	DQ	DR	DS	DT	DU	ØUU	Type A1	ype A1* Type C		Туре	E1BG	Туре	D1BG
BG25	20	30.5	42	49.5	36	50	35	8	5.7	15	36.5	10	2010F	L -		2148	32FIL	2148	3FIL
BG32	34	30.5	49	55.5	36	50	42.5	8	5.7	15	42.5	10	3010F	L -		2148	37FIL	2148	88FIL
BG40	43	34	56	63	45	60	48	10	-	11	48	-	-	4010	FIL	2151	OFIL	2151	1FIL
BG50	56	34	62.5	69.5	45	60	54	23	-	11	54.5	-	-	5010	FIL	2159	4FIL	2159	3FIL
																			* = Pair

- ³⁾ ATEX with VOE not possible.
- $^{\scriptscriptstyle 4)}$ "Lubrication slow speed" in combination with "max. cushioning length" not possible.

Accessories - please order separately

Description	Further information see						
End Cap Mounting	Page 44						
Mid-Section Support	Page 44						
Magnetic Switches	Page 123						

Linear Guides Series OSP-P

Contents

Description	Page
Overview	47-48
Plain bearing guide SLIDELINE	49-51
Roller guide POWERSLIDE	53-57
Aluminium roller guide PROLINE	59-61
Recirculating ball bearing guide STARLINE	63-69
Recirculating ball bearing guide KF	71-77
Heavy duty guide HD	79-86

The right to introduce technical modifications is reserved

Adaptive modular system

The Origa system plus - OSP provides a comprehensive range of linear guides for the pneumatic and electric linear drives.

Advantages:

- Takes high loads and forces
- High precision
- Smooth operation
- Can be retrofitted
- Can be installed in any position

Rodless Pneumatic Cylinder

BASIC GUIDE Compact, robust plain bearing guide for medium loads. Piston diameters 25-50 mm

See page 39-45 (Standard) page 35-36 (ATEX-Version)

Linear Guides

SLIDELINE

The cost-effective plain bearing guide for moderate loads. Active/ Passive Brake optional.

Piston diameters 16 - 80 mm

See Page 49-51 (Standard) See Page 35-36 (ATEX-Version)

POWERSLIDE

The roller guide for heavy loads and hard application conditions Piston diameters 16 - 50 mm

See page 53-57

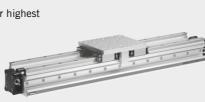
PROLINE

The compact aluminium roller guide for high loads and velocities. Active/ Passive Brake optional. Piston diameters 16 - 50 mm See page 59-61

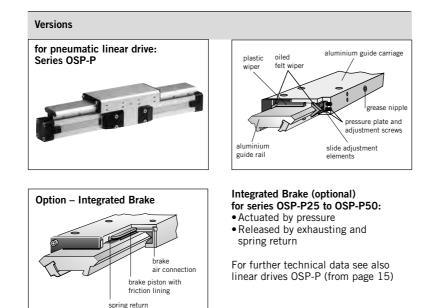
STARLINE

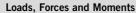
Recirculating ball bearing guide for very high loads and precision Piston diameters 16 - 50 mm

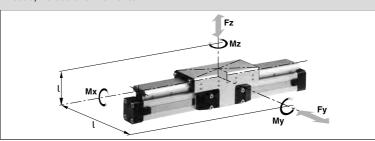
See page 63-69


KF GUIDE

Recirculating ball bearing guide for high loads and precision. Correspond to FESTO dimensions (Type DGPL-KF) Piston diameters 16 - 50 mm


See page 71-77




HD HEAVY DUTY GUIDE Recirculating ball bearing guide for highest loads and greatest accuracy. Piston diameters 25 - 50 mm See page 79-86

Technical Data

The table shows the maximum permissible values for smooth operation, which should not be exceeded even under dynamic conditions.

The load and moment figures apply to speeds v < 0.2 m/s.

* Please note:

In the cushioning diagram, add the mass of the guide carriage to the mass to be cushioned.

Plain Bearing Guide SLIDELINE

Series SL 16 to 80 for Linear-drive • Series OSP-P

Features:

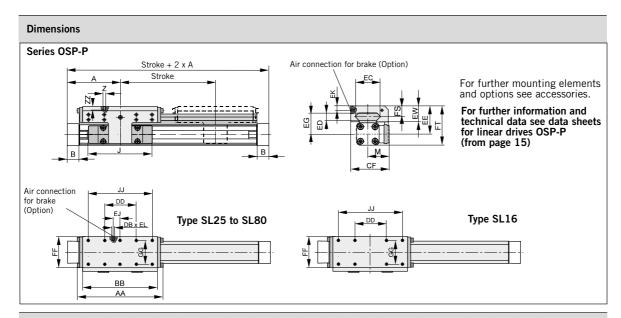
- ATEX-version (without brake) is also available
- (see page 35-36)Anodised aluminium guide rail with prism-shaped slideway arrangement
- Adjustable plastic slide elements

 optional with integral brake
- Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the slideways
- Corrosion resistant version available on request
- Any length of stroke up to 5500 mm (longer strokes on request)

¹⁾ Only with integrated brake: Braking force on dry oil-free surface Values are decreased for lubricated

slideways ²⁾ Corrosion resistant fixtures available on request

Series	For linear drive	М	ax. mome [Nm]	nts	Max. loads [N]	Maximum braking force		of linear drive /ith guide [kg]	Mass * of guide carriage	SLIDI	'-No. ** ELINE ²⁾ out cylinder
		Mx	My	Mz	Fy, Fz	at 6 bar [N] ¹⁾	with 0 mm stroke	increase per 100 mm stroke	[kg]	without brake	with brake
SL16	OSP-P16	6	11	11	325	-	0.57	0.22	0.23	20341	on request
SL25	OSP-P25	14	34	34	675	325	1.55	0.39	0.61	20342	20409
SL32	OSP-P32	29	60	60	925	545	2.98	0.65	0.95	20196	20410
SL40	OSP-P40	50	110	110	1600	835	4.05	0.78	1.22	20343	20411
SL50	OSP-P50	77	180	180	2000	1200	6.72	0.97	2.06	20195	20412
SL63	OSP-P63	120	260	260	2500	-	11.66	1.47	3.32	20853	-
SL80	OSP-P80	120	260	260	2500	-	15.71	1.81	3.32	21000	-


** Please use this order pattern: Order-No. + "stroke in mm" (5 digits)

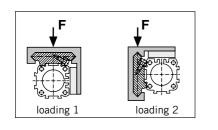
Example: SLIDELINE guide without brake D25 mm, stroke 1000 mm: 20342-01000

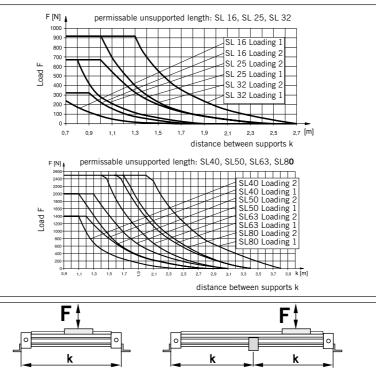
For linear drives see page 9-13, for ATEX-version see page 35, 36 For mountings see page 107-115

The right to introduce technical modifications is reserved

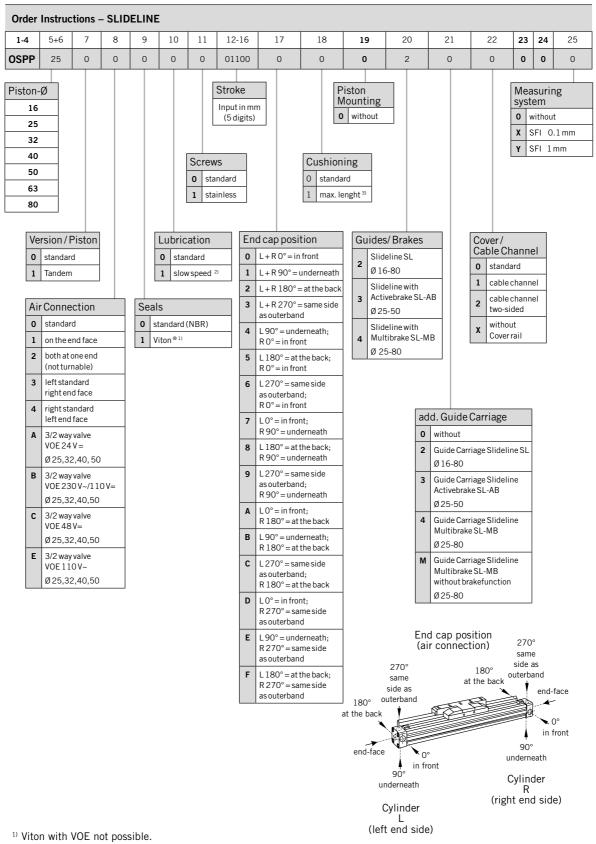
Dimension Table [mm]

Series	A	В	J	М	z	AA	BB	DB	DD	CF	EC	ED	EE	EG	EJ	ΕK	EL	EW	FF	FT	FS	GG	11	zz
SL16	65	14	69	31	M4	106	88	-	30	55	36	8	40	30	-	-	-	22	48	55	14	36	70	8
SL25	100	22	117	40.5	M6	162	142	M5	60	72.5	47	12	53	39	22	6	6	30	64	73.5	20	50	120	12
SL32	125	25.5	152	49	M6	205	185	M5	80	91	67	14	62	48	32	6	6	33	84	88	21	64	160	12
SL40	150	28	152	55	M6	240	220	M5	100	102	77	14	64	50	58	6	6	34	94	98.5	21.5	78	200	12
SL50	175	33	200	62	M6	284	264	M5	120	117	94	14	75	56	81	6	6	39	110	118.5	26	90	240	16
SL63	215	38	256	79	M8	312	292	-	130	152	116	18	86	66	-	-	-	46	152	139	29	120	260	14
SL80	260	47	348	96	M8	312	292	-	130	169	116	18	99	79	-	-	-	46	152	165	29	120	260	14

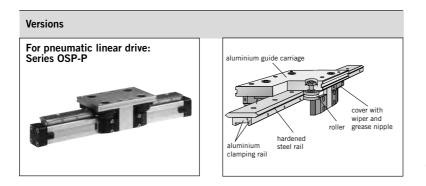

Mid-Section Support


(for versions see page 109)

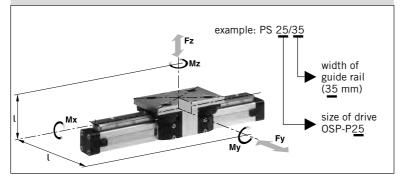
Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.


Note:

For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.



The right to introduce technical modifications is reserved


 $^{\scriptscriptstyle 3)}$ "Lubrication slow speed" in combination with "max. cushioning length" not possible.

Loads, Forces and Moments

Technical Data

The Table shows the maximum permissible values for smooth operation, which should not be exceeded even under dynamic conditions. For further information and technical data see data sheets for linear drives OSP-P (from page 15).

* Please note:

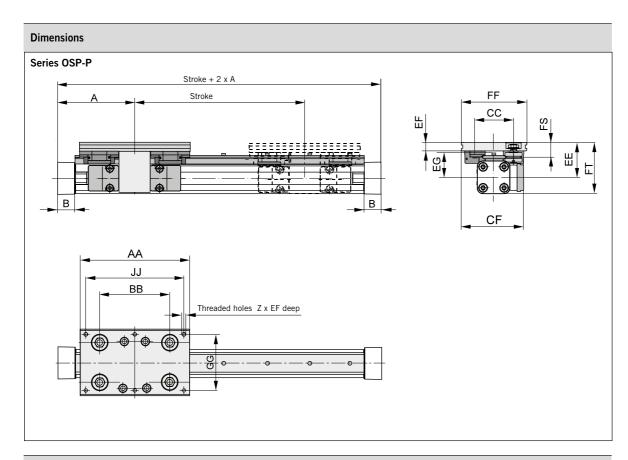
In the cushioning diagram, add the mass of the guide carriage to the mass to be cushioned.

Roller Guide POWERSLIDE

Series PS 16 to 50 for Linear-drive • Series OSP-P

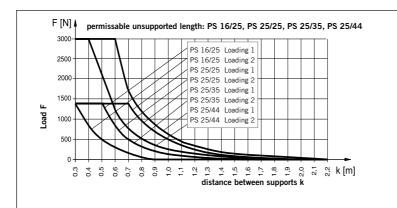
Features:

- · Anodised aluminium guide carriage with vee rollers having 2 rows of ball bearings
- Hardened steel guide rail
- Several guide sizes can be used on the same drive
- Corrosion resistance version available on request
- Max. speed v = 4 m/s,
- Tough roller cover with wiper and grease nipple
- Any length of stroke up to 3500 mm, (longer strokes on request)

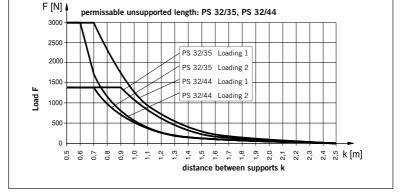

Series	For linear drive	N	/lax. Momer [Nm]	ht	Max. loads [N]		of linear drive ith guide [kg]	Mass * guide carriage	Order-No ** POWERSLIDE Guide
		Mx	My	Mz	Fy, Fz	with 0 mm stroke	increase per 100 mm stroke	[kg]	without cylinder ¹⁾
PS 16/25	OSP-P16	14	45	45	1400	0.93	0.24	0.7	20285
PS 25/25	OSP-P25	14	63	63	1400	1.5	0.4	0.7	20015
PS 25/35	OSP-P25	20	70	70	1400	1.7	0.4	0.8	20016
PS 25/44	OSP-P25	65	175	175	3000	2.6	0.5	1.5	20017
PS 32/35	OSP-P32	20	70	70	1400	2.6	0.6	0.8	20286
PS 32/44	OSP-P32	65	175	175	3000	3.4	0.7	1.5	20287
PS 40/44	OSP-P40	65	175	175	3000	4.6	1.1	1.5	20033
PS 40/60	OSP-P40	90	250	250	3000	6	1.3	2.2	20034
PS 50/60	OSP-P50	90	250	250	3000	7.6	1.4	2.3	20288
PS 50/76	OSP-P50	140	350	350	4000	11.5	1.8	4.9	20289

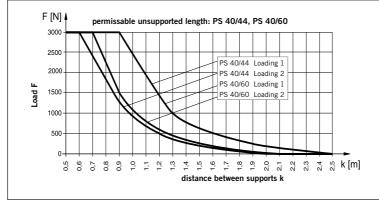
¹⁾ corrosion resistance version on request (max.loads and moments are 25% lower) ** Please use this order pattern: Order-No. + "stroke in mm" (5 digits)

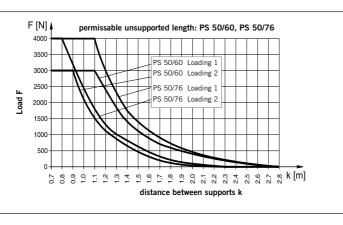
Example: PS25/25 Guide D25 mm. stroke 1000 mm: 20015-01000

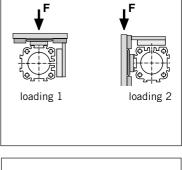

For **linear drives** see page 9-13 For **mountings** see page 107-115

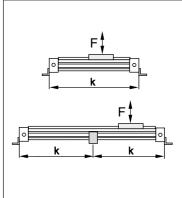
Dimension ⁻	Table [n	nm]													
Series	A	в	z	AA	BB	сс	CF	EE	EF	EG	FF	FS	FT	GG	11
PS 16/25	65	14	4xM6	120	65	47	80	49	12	35	80	21	64	64	100
PS 25/25	100	22	6xM6	145	90	47	79.5	53	11	39	80	20	73.5	64	125
PS 25/35	100	22	6xM6	156	100	57	89.5	52.5	12.5	37.5	95	21.5	73	80	140
PS 25/44	100	22	6xM8	190	118	73	100	58	15	39	116	26	78.5	96	164
PS 32/35	125	25.5	6xM6	156	100	57	95.5	58.5	12.5	43.5	95	21.5	84.5	80	140
PS 32/44	125	25.5	6xM8	190	118	73	107	64	15	45	116	26	90	96	164
PS 40/44	150	28	6xM8	190	118	73	112.5	75	15	56	116	26	109.5	96	164
PS 40/60	150	28	6xM8	240	167	89	122.5	74	17	54	135	28.5	108.5	115	216
PS 50/60	175	33	6xM8	240	167	89	130.5	81	17	61	135	28.5	123.5	115	216
PS 50/76	175	33	6xM10	280	178	119	155.5	93	20	64	185	39	135.5	160	250



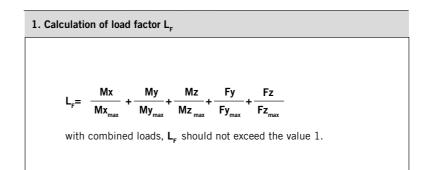

(for versions, see accessories)


Mid section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.


Note


For speeds v > 0.5 m/s the distance between supports should not exceed 1m.

For further mounting elements and options see from page 101.


The right to introduce technical modifications is reserved

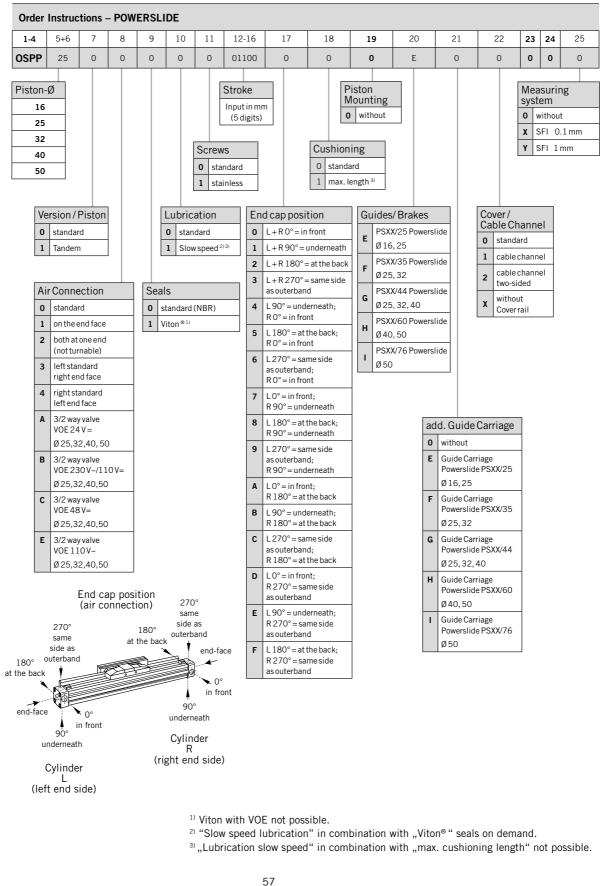
Service life

Calculation of service life is achieved in two stages:

- Determination of load factor LF from the loads to be carried
- Calculation of service life in km

Lubrication

For maximum system life, lubrication of the rollers must be maintained at all times.


Only high quality Lithium based greases should be used.

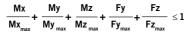
Lubrication intervals are dependant on environmental conditions (temperature, running speed, grease quality etc.) therefore the installation should be regularly inspected.

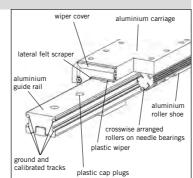
2. Service life calculation	
• For PS 16/25, PS 25/25, PS 25/35, and PS 32/35	Service life [km] = $\frac{106}{(L_F + 0.02)^3}$
• For PS 25/44, PS 32/44, PS 40/44, PS 40/60 and PS 50/60:	Service life [km] = $\frac{314}{(L_{F} + 0.015)^{3}}$
• For PS 50/76:	Service life [km] = $\frac{680}{(L_{F} + 0.015)^{3}}$

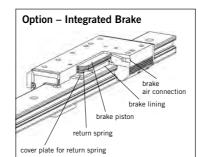
56



The right to introduce technical modifications is reserved



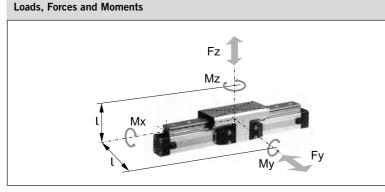

Technical Data


The table shows the maximal permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

The sum of the loads should not exceed >1. With a load factor of less than 1, service life is 8000 km

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

Aluminium **Roller Guide** PROLINE


Series PL 16 to 50 for Linear-drive Series OSP-P

Features:

- High precision
- High velocities (10 m/s)
- Smooth operation low noise
- Integated wiper system
- Long life lubrication
- Compact dimensions compatible
- to Slideline plain bearing guide • Any length of stroke up to 3750 mm

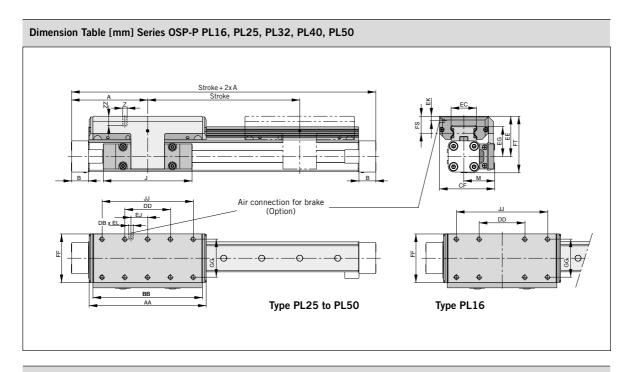
Integrated Brake (optional) for Series OSP-P25 to OSP-P50:

- Actuated by pressurisation
- Release by depressurisation and spring actuation

* Please note: The mass of the carriage has to be added to the total moving mass when using the cushioning diagram.

Series	For linear drive	Ma	ax. Mome [Nm]	ent	Max. loads [N]	Maximum braking force		of linear drive vith guide [kg]	Mass * guide carriage	PRC	No ** DLINE out cylinder
		Мх	Му	Mz	Fy, Fz	at 6 bar [N] ¹⁾	with 0 mm stroke	increase per 100 mm stroke	[kg]	without Brake	with Brake
PL 16	OSP-P16	8	12	12	542	-	0.55	0.19	0.24	20855	-
PL 25	OSP-P25	16	39	39	857	on request	1.65	0.40	0.75	20856	20860
PL 32	OSP-P32	29	73	73	1171	on request	3.24	0.62	1.18	20857	20861
PL40	OSP-P40	57	158	158	2074	on request	4.35	0.70	1.70	20858	20862
PL 50	OSP-P50	111	249	249	3111	on request	7.03	0.95	2.50	20859	20863

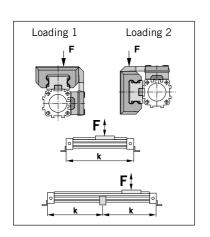
¹¹Only with integrated brake: Braking surface on dry, oil-free surface - Values are decreased at oiled braking surface


** Please use this order pattern: Order-No. + "stroke in mm" (5 digits) Example: PROLINE guide without brake D16 mm, stroke 1000 mm: 20855-01000

For **linear drives** see page 9-13 For **mountings** see page 107-115

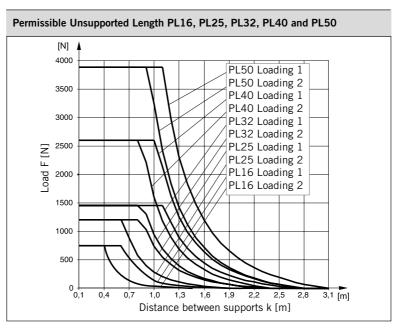
59

Tel: +45 63 12 83 00 | Email: ps@hymatik.com | www.hymatik.com | Hvidkaervej 27a, DK-5250 Odense SV, Denmark

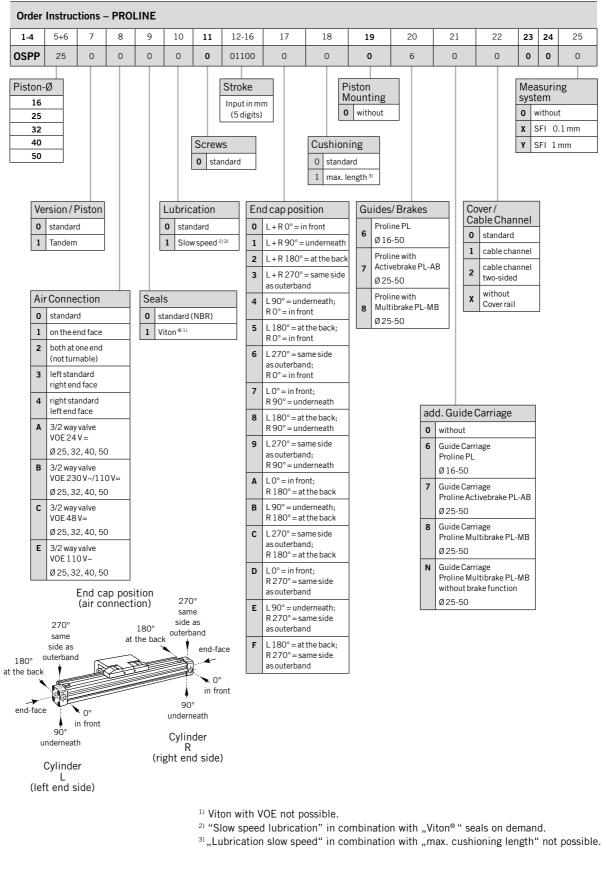


Dimension Table [mm] Series OSP-P PL16, PL25, PL32, PL40, PL50

Series	A	В	J	М	z	AA	BB	DB	DD	CF	EC	EE	EG	EJ	EK	EL	FF	FS	FT	GG	11	ZZ
PL16	65	14	69	31	M4	98	88	-	30	55	23	40	30	-	-	-	48	17	55	36	70	8
PL25	100	22	117	40.5	M6	154	144	M5	60	72.5	32.5	53	39	22	6	6	64	23	73.5	50	120	12
PL32	125	25.5	152	49	M6	197	187	M5	80	91	42	62	48	32	6	6	84	25	88	64	160	12
PL40	150	28	152	55	M6	232	222	M5	100	102	47	64	50.5	58	6	6	94	23.5	98.5	78	200	12
PL50	175	33	200	62	M6	276	266	M5	120	117	63	75	57	81	6	6	110	29	118.5	90	240	16

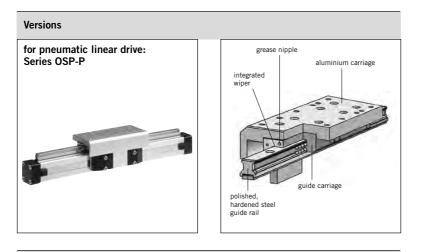

Mid-Section Support

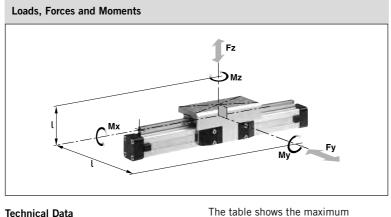
(For versions, see page 107-115) Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.



Note:

For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.





Technical Data

The table shows the maximum permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

$$\frac{Mx}{Mx} + \frac{My}{My} + \frac{Mz}{Mz} + \frac{Fy}{Fy} + \frac{Fz}{Fz} \leq 1$$

The sum of the loads should not exceed >1

Recirculating **Ball Bearing** Guide **STARLINE**

Series STL 16 to 50 for Linear Drive Series OSP-P

Features:

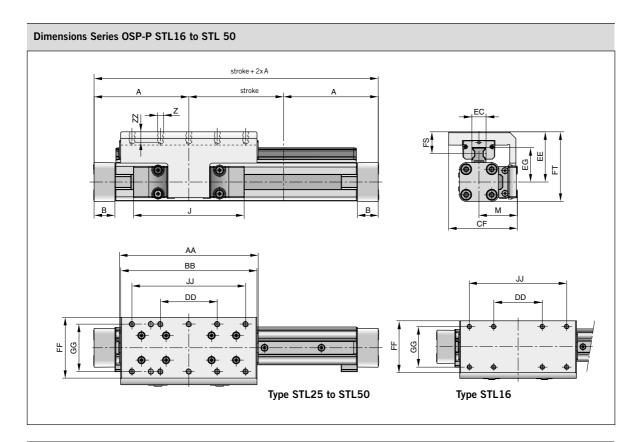
- Polished and hardened steel guide rail
- For very high loads in all directions
- High precision
- Integrated wiper system
- Integrated grease nipples
- Any length of stroke up to 3700 mm
- Anodized aluminium guide carriage - dimensions compatible with OSP guides SLIDELINE and PROLINE
- Installation height (STL16 32) compatible with OSP guides SLIDELINE and PROLINE
- Maximum speed
- STL16: v = 3 m/s STL25 to 50: v = 5 m/s
- ed even under dynamic conditions.

* Please note:

The mass of the carriage has to be added to the total moving mass when using the cushioning diagram.

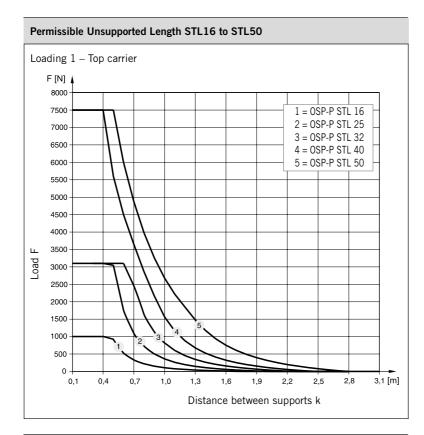
Series	For linear drive	Ν	1ax. Momer [Nm]	it		loads N]	wit	linear drive h guide [kg]	Mass * guide carriage	Order-No ** STARLINE Guide without
		Mx	My	Mz	Fy	Fz	with 0 mm stroke	increase per 100 mm stroke	[kg]	cylinder
STL 16	OSP-P16	15	30	30	1000	1000	0.598	0.210	0.268	21111
STL 25	OSP-P25	50	110	110	3100	3100	1.733	0.369	0.835	21112
STL 32	OSP-P32	62	160	160	3100	3100	2.934	0.526	1.181	21113
STL 40	OSP-P40	150	400	400	4000	7500	4.452	0.701	1.901	21114
STL 50	OSP-P50	210	580	580	4000	7500	7.361	0.936	2.880	21115

permissible values for light, shock-free

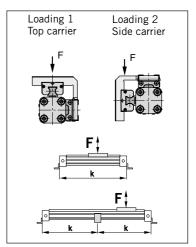

operation, which must not be exceed-

** Please use this order pattern: Order-No. + ...stroke in mm" (5 digits) Example: STARLINE guide D16 mm, stroke 1000 mm: 21111-01000

For **linear drives** see page 9-13 For **mountings** see page 107-115


The right to introduce technical modifications is reserved

Dimens	ion Tal	ble[mn	n]Serie	es OSP	-P ST	L16 to \$	STL50											
Series	Α	В	J	м	z	AA	BB	CF	DD	EC	EE	EG	FF	FS	FT	GG	11	ZZ
STL16	65	14	69	31	M4	93	90	55	30	15	40	24.6	48	18	55	36	70	8
STL25	100	22	117	40.5	M6	146.6	144	72.5	60	15	53	36.2	64	23.2	73.5	50	120	12
STL32	125	25.5	152	49	M6	186.6	184	91	80	15	62	42.2	84	26.2	88	64	160	12
STL40	150	28	152	55	M6	231	226	102	100	20	72	51.6	94	28.5	106.5	78	200	12
STL50	175	33	200	62	M6	270.9	266	117	120	23	85	62.3	110	32.5	128.5	90	240	16



Permissible Unsupported Length STL16 to STL50 Loading 2 - Side carrier F [N] 8000 7500 1 = 0SP-P STL 16 2 = 0SP-P STL 25 7000 3 = 0SP-P STL 32 6500 4 = 0SP-P STL 40 5 = 0SP-P STL 50 6000 5500 5000 4500 4000 ш Load 3500 3000 2500 2000 1500 1000 500 0 2,2 3,1 [m] 0,4 0,7 1.0 1.6 1.9 2.5 2.8 0,1 1,3 Distance between supports k

Mid-Section Support

(For versions, see page 106-107) Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.

Note:

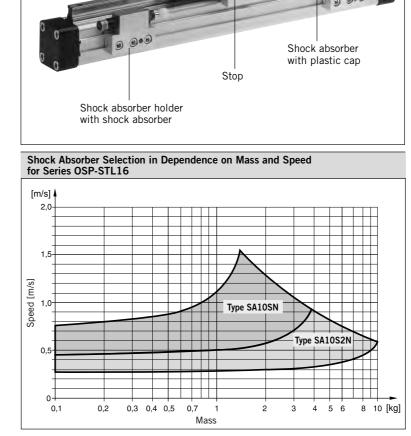
For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.

Variable Stop

The variable stop Type VS provides simple stroke limitation. It can be retrofitted and positioned anywhere along the stroke length. For every cylinder diameter two types of shock absorber are available – see "Shock Absorber Selection" below.

Mid-section supports and magnetic switches can still be fitted on the same side as the variable stop.

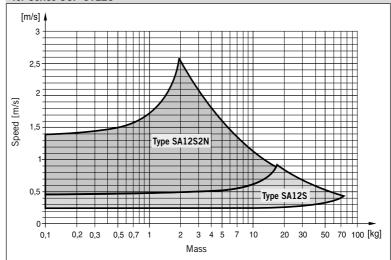
Depending on the application, two variable stops can be fitted if required.


Shock Absorber Selection

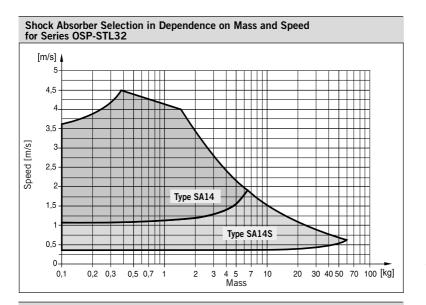
The values relate to an effective

driving force of 78 N (6 bar)

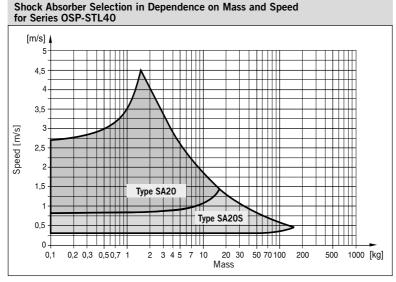
taken into account.


The shock absorber is selected in dependence on the mass and speed. The mass of the carrier itself must be

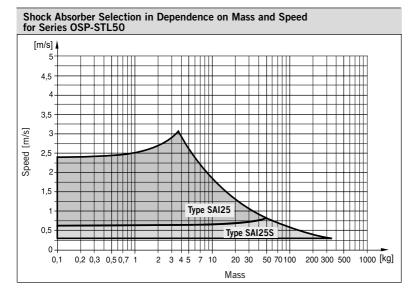
Variable Stop Type VS16 to VS50


Arrangement with two variable stops

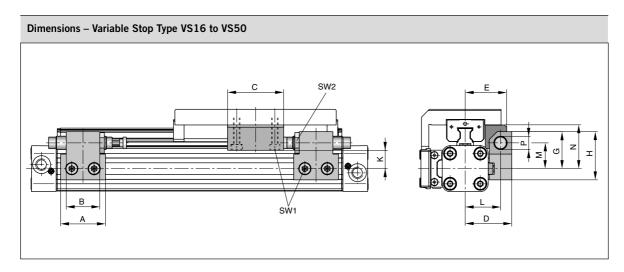
Shock Absorber Selection in Dependence on Mass and Speed for Series OSP-STL25

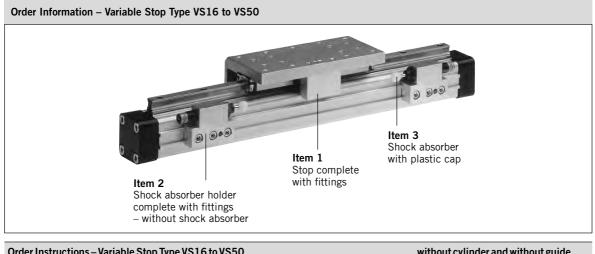


The values relate to an effective driving force of 250 N (6 bar)


hymatik

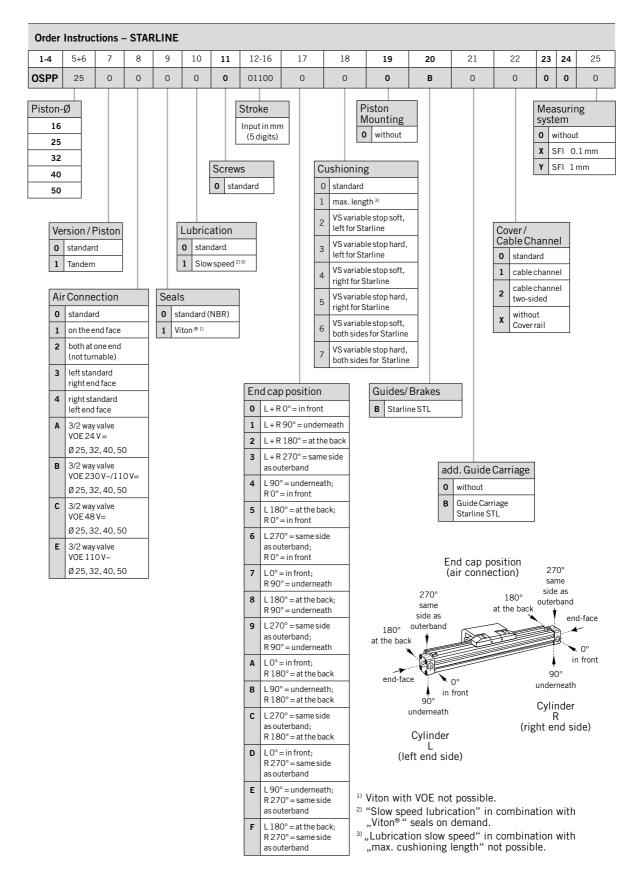
The values relate to an effective driving force of 420 N (6 bar)


The values relate to an effective driving force of 640 N (6 bar)


The values relate to an effective driving force of 1000 N (6 bar)

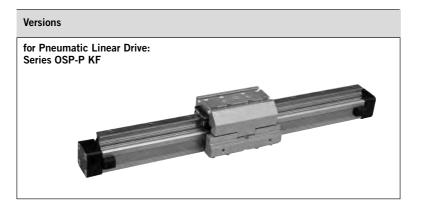
The right to introduce technical modifications is reserved

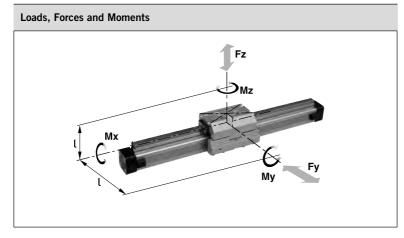
Dimension Ta	ble [mn	n] – V	ariable	Stop Ty	/pe VS1	L6 to V	S50								
Series	Туре	A	в	С	D	E	G	н	к	L	м	N	Р	SW1	SW2
OSP-STL16	VS16	30	14	25	33	30	28	38	16.2	25.5	20.5	30	M10x1	4	12.5
OSP-STL25	VS25	40	30	50	41.5	37	33	43	18	31.5	23	39	M12x1	5	16
OSP-STL32	VS32	60	40	50	45.5	42	35	45	19	35.5	25	48	M14x1.5	5	17
OSP-STL40	VS40	84	52	60	64	59	48	63	25.6	50	34	58.6	M20x1.5	5	24
OSP-STL50	VS50	84	-	60	75	69	55	70	26.9	57	38	66.9	M25x1.5	5	30



Orde	er mstructions – variai	stop ty	he 1210 10	V350				withou	it cynnuer a		li guide
Item	Description	Size VS16		VS25		VS32		VS40		VS50	
		Туре	Order No.	Туре	Order No.	Туре	Order No.	Туре	Order No.	Туре	Order No.
1	Stop, complete	-	21196FIL	-	21197FIL	-	21198FIL	-	21199FIL	-	21200FIL
2	Shock absorber holder complete	-	21201FIL	-	21202FIL	-	21203FIL	-	21204FIL	-	21205FIL
3*	Shock absorber, soft	SA10SN	7718FIL	SA12S2N	7723FIL	SA14	7708FIL	SA20	7930FIL	SAI25	7712FIL
5.	Shock absorber, hard	SA10S2N	7721FIL	SA12S	7707FIL	SA14S	7709FIL	SA20S	7711FIL	SAI25S	7713FIL

* Shock absorber with plastic cap


Note: Order instructions for VS in combination with the cylinder and guide see page 69, pos. 18



Technical Data

exceed > 1

The table shows the maximum permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

 $\frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \le 1$

The sum of the loads should not

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

* Please note:

the mass of the carriage has to be added to the total moving mass when using the cushioning diagram.

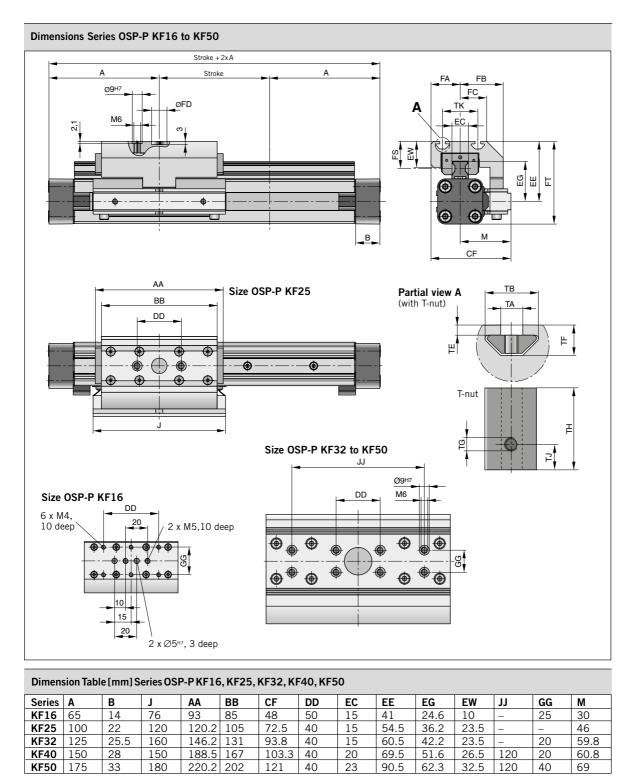
For linear Max. moment Max. loads Mass of linear drive Mass * Groove Series Order-No. drive [Nm] [N] with guide guide stone [kg] carriage [kg] Мx Мy Mz Fy Fz with increase Thread Guide KF Groove 0 mm per 100 mm stroke size Stone without cylinder ** stroke 0.558 **KF16** OSP-P16 12 25 25 1000 1000 0.21 0.228 21101 OSP-P25 1.522 0.607 Μ5 13508FIL 21102 KF25 35 90 90 3100 3100 0.369 13508FIL 21103 KF32 OSP-P32 44 133 133 3100 3100 2.673 0.526 0.896 Μ5 KF40 OSP-P40 119 346 346 4000 7100 4.167 0.701 1.531 Μ6 13509FIL 21104 480 480 4000 7500 7.328 0.936 2.760 Μ8 13510FIL 21105 KF50 OSP-P50 170

** Please use this order pattern: Order-No. + "stroke in mm" (5 digits) Example: KF guide D16 mm, stroke 1000 mm: 21101-01000

For **linaer drives** see page 9-13 For **mountings** see page 107-115

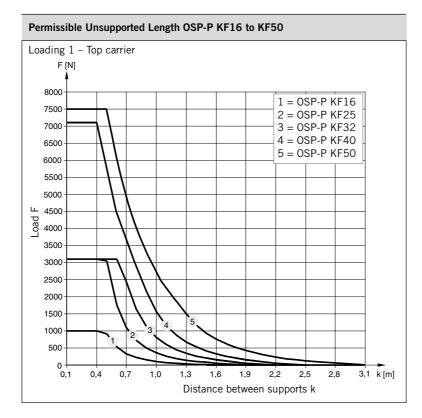
The right to introduce technical modifications is reserved

Recirculating Ball Bearing Guide KF


Series KF16 to KF50 For Linear Drives Series OSP-P CLASSIC

Features:

- Anodized aluminium guide carriage, the mounting dimensions correspond to FESTO Type: DGPL-KF
- Polished and hardened steel guide rail
- For high loads in all directions
- High precision
- Integrated wiper system
- Integrated grease nipples
 Any length of stroke up to 3700 mm
 Maximum speed
- KF16, KF40: v = 3 m/s KF25, KF32, KF50: v = 5 m/s


Tel: +45 63 12 83 00 | Email: ps@hymatik.com | www.hymatik.com | Hvidkaervej 27a, DK-5250 Odense SV, Denmark

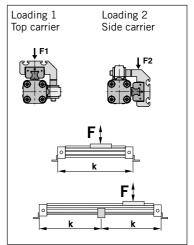
Series	FA	FB	FC	FD	FT	FS	TA	ТВ	TE	TF	TG	TH	TJ	ΤK
KF16	17.7	29	16.5	-	56	19	-	-	-	-	-	-	-	-
KF25	26.5	39	24	14 ^{G7}	75	24.7	5	12.1	2.3	6.9	M5	11.5	4	32
KF32	34	53.8	34	25 ^{G7}	86.5	24.7	5	12.1	1.8	6.4	M5	11.5	4	47
KF40	42.5	56.8	41	25 ^{G7}	104	26	6	12.8	1.8	8.4	M6	17	5.5	55
KF50	52	65	50	25 ^{G7}	134	38	8	21.1	4.5	12.5	M8	23	7.5	72

Permissible Unsupported Length OSP-P KF16 to KF50

1,0

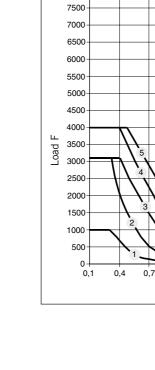
1,3

1,6


1,9

Distance between supports k

Loading 2 – Side carrier


Mid-Section Support

(For versions, see page 111, 114-115) Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.

Note:

For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.

2.2

2.5

2.8

3.1 k [m]

1 = 0SP-P KF16

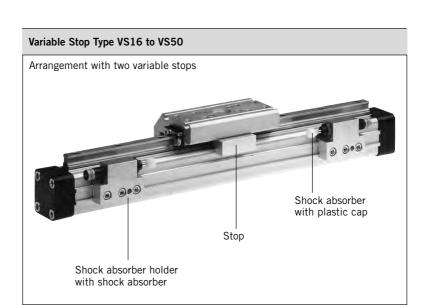
2 = 0SP-P KF25

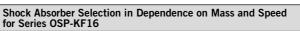
3 = 0SP-P KF32

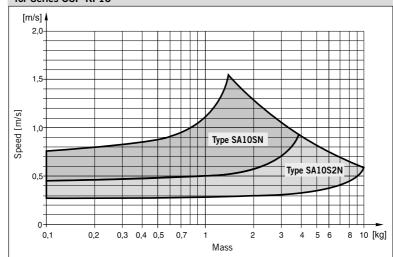
4 = OSP-P KF40

5 = 0SP-P KF50

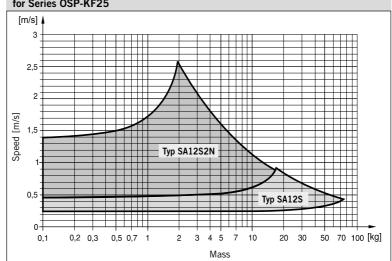
Variable Stop


The variable stop Type VS provides simple stroke limitation. It can be retrofitted and positioned anywhere along the stroke length. For every cylinder diameter two types of shock absorber are available – see "Shock Absorber Selection" below.

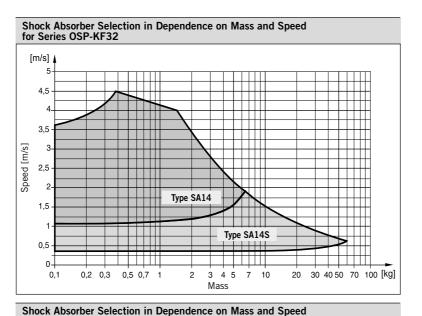

Mid-section supports and magnetic switches can still be fitted on the same side as the variable stop.


Depending on the application, two variable stops can be fitted if required.

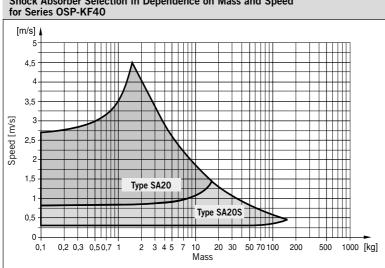
Shock Absorber Selection


The shock absorber is selected in dependence on the mass and speed. The mass of the carrier itself must be taken into account.

Shock Absorber Selection in Dependence on Mass and Speed for Series OSP-KF25

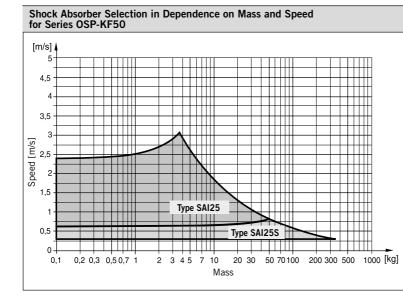

The values relate to an effective

driving force of 250 N (6 bar)

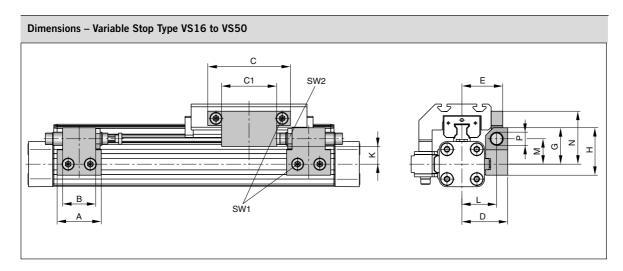

The values relate to an effective

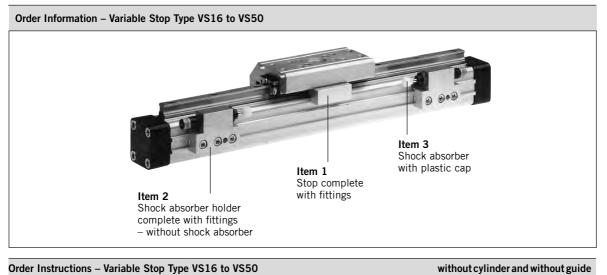
driving force of 78 N (6 bar)

hymatik



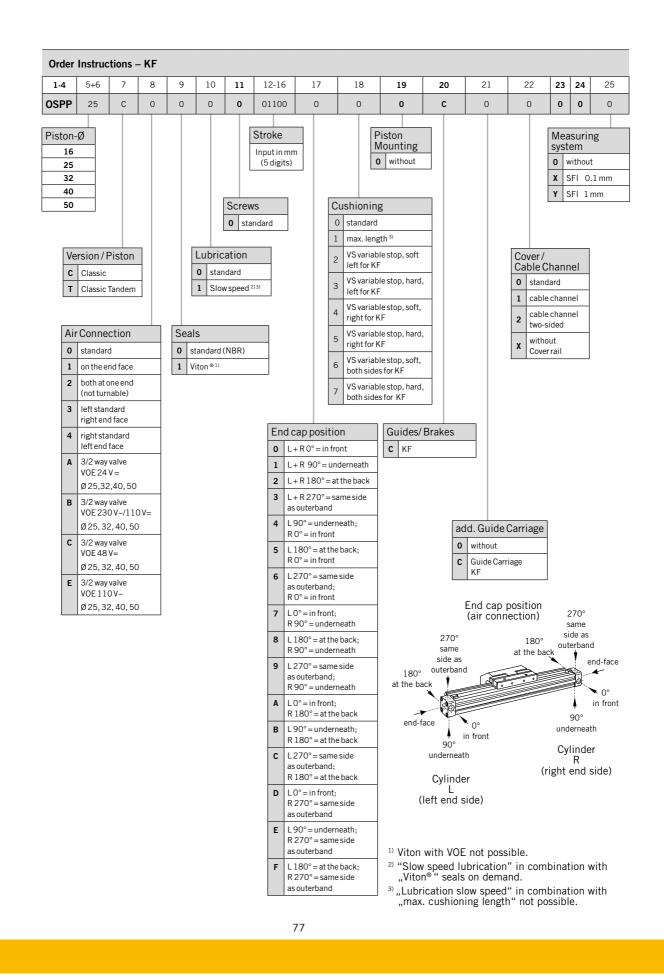
The values relate to an effective driving force of 420 N (6 bar)


The values relate to an effective driving force of 640 N (6 bar)


The values relate to an effective driving force of 1000 N (6 bar) $\,$

The right to introduce technical modifications is reserved

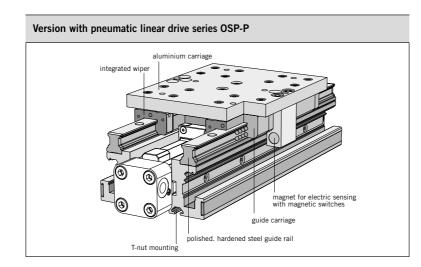
Dimension T	Dimension Table [mm] – Variable Stop Type VS16 to VS50															
Series	Туре	A	в	С	C1	D	Е	G	н	к	L	м	N	Р	SW1	SW2
OSP-KF16	VS16	30	14	50	25	33	29.7	28	38	16.2	25.5	20.5	40.5	M10 x 1	4	12.5
OSP-KF25	VS25	40	30	75	50	41.5	37	33	43	18	31.5	23	48	M12 x 1	5	16
OSP-KF32	VS32	60	40	50	-	45.5	41.5	35	45	19	35.5	25	37	M14 x 1.5	5	17
OSP-KF40	VS40	84	52	60	-	64	59	48	63	25.5	50	34	43	M20 x 1.5	5	24
OSP-KF50	VS50	84	-	60	-	75	69	55	70	26.9	57	38	58	M25 x 1.5	5	30

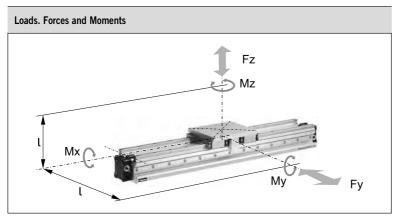

Order Instructions – Variable Stop Type VS16 to VS50

Item	Description	Size											
		VS16		VS25		VS32		VS40		VS50			
		Туре	Order No.	Туре	Order No.	Туре	Order No.	Туре	Order No.	Туре	Order No.		
1	Stop, complete	-	21186FIL	-	21187FIL	-	21188FIL	-	21189FIL	-	21190FIL		
2	Shock absorber holder, complete	-	21201FIL	-	21202FIL	-	21203FIL	-	21204FIL	-	21205FIL		
3*	Shock absorber, soft	SA10SN	7718FIL	SA12S2N	7723FIL	SA14	7708FIL	SA20	7930FIL	SAI25	7712FIL		
3	Shock absorber, hard	SA10S2N	7721FIL	SA12S	7707FIL	SA14S	7709FIL	SA20S	7711FIL	SAI25S	7713FIL		

* Shock absorber with plastic cap

Note: Order instructions for VS in combination with the cylinder and guide see page 77, pos.18




Tel: +45 63 12 83 00 | Email: ps@hymatik.com | www.hymatik.com | Hvidkaervej 27a, DK-5250 Odense SV, Denmark

The right to introduce technical modifications is reserved

Technical Data

The table shows the maximum permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:

$$\frac{Mx}{Mx} + \frac{My}{My} + \frac{Mz}{Mz} + \frac{Fy}{Fy} + \frac{Fz}{Fz} \leq 1$$

The sum of the loads should not >1

The table shows the maximum permissible values for light, shock-free operation. which must not be exceeded even under dynamic conditions.

* Please note:

The mass of the carriage does not have to be added to the total moving mass when using the cushioning diagram.

Series	For linear drive	Ν	/lax. momen [Nm]	t		loads N]		f linear drive uide carriage [kg]	Mass * guide [kg]	Order-No. ** HD Guide
		Мx	Му	Mz	Fy	Fz	with increase 0 mm per stroke 100 mm stroke			without cylinder
HD 25	OSP-P25	260	320	320	6000	6000	3.065	0.924	1.289	21246
HD 32	OSP-P32	285	475	475	6000	6000	4.308	1.112	1.367	21247
HD 40	OSP-P40	800	1100	1100	15000	15000	7.901	1.748	2.712	21248
HD 50	OSP-P50	1100	1400	1400	18000	18000	11.648	2.180	3.551	21249

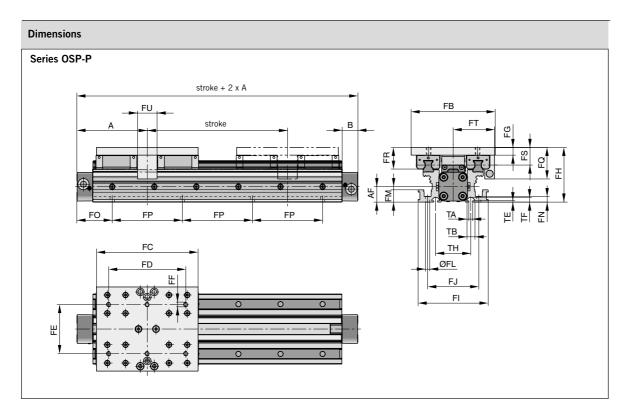
** Please use this order pattern: Order-No. + "stroke in mm" (5 digits) Example: HD Guide D25 mm, stroke 1000 mm: 21246-01000

For linear drives see page 9-13

The right to introduce technical modifications is reserved

Heavy Duty-Guide HD

Series HD 25 to 50 for Linear Drive Series OSP-P


Features:

- Guide system:
- 4-row recirculating ball bearing guidePolished and hardened steel guide
- rail • For highest loads in all directions • Highest precision
- Integrated wiper system
- Integrated grease nipples
- Any lengths of stroke up to 3700 mm
- (longer strokes on request)
- Anodized aluminium guide carriage - dimensions compatible with OSP guide GUIDELINE
- Maximum speed v = 5 m/s

Options:

- With variable stop
- With intermediate stop module

Note:

The HD heavy duty guide must be mounted on a flat surface for its entire length.

Variable Stop Type VS25 to VS50

The variable stop provides simple stroke limitation and can be supplied mounted on the right or left, as required.

For further information see following data sheets:

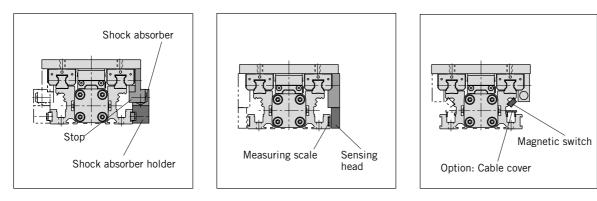
For dimensions and order instructions see page 82

For shock absorber selection see page 66, 67

If T-grooves or T-bolts are used, the distance between them should not exeed 100 mm.

Incremental displacement measuring system ORIGA-Sensoflex Series SFI-plus

can be supplied mounted on the right or left, as required.


For further information see page 129-133.

Arrangement of magnetic switches:

Magnetic switches can be fitted anywhere on either side.

For further information see following data sheets:

Magnetic Switches see page 123-126 Cable Cover see page 127. Linear Drives OSP-P see from page 15

Dimension Table [mm]

Diment		e [iiiii]											
Series	Α	В	AF	FB	FC	FD	FE	FF	FG	FH	FI	FJ	ØFL
HD25	100	22	22	120	145	110	70	M6	11	78	100	73	6
HD32	125	25.5	30	120	170	140	80	M6	11	86	112	85	6
HD40	150	28	38	160	180	140	110	M8	14	108	132	104	7.5
HD50	175	33	48	180	200	160	120	M8	14	118	150	118	7.5
Series	FM	FN	FP	FQ	FR	FS	FT	FU	TA	ТВ	TE	TF	ТН
HD25	17.5	8	100	45	31	25	59	28	5.2	11.5	1.8	6.4	50
HD32	17.5	8	100	45	31	25	63	30	5.2	11.5	1.8	6.4	60
HD40	22	10	100	58	40	31.5	76	30	8.2	20	4.5	12.3	66
	22	10	100	58	44	35.5	89	30	8.2	20	4.5	12.3	76

FO

OSP-P

HD32

50.0

50.5

51.0

51.5

52.0

52.5 53.0

53.5

54.0

54.5

55.0

55.5

56.0

56.5

57.0

57.5

58.0

58.5

59.0

59.5

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

68.0

68.5

69.0

69.5

70.0

70.5

71.0

72.0

72.5

73.0

73.5

74.0

74.5

HD40

75.0

75.5

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

80.5

80.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

86.5

87.0

87.5

88.0

38.5

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

46.5

47.0

47.5

48.0

48.5

49.0

49.5

HD50

50.0

50.5

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

55.0

55.5

56.0

56.5

57.0

57.5

58.0

58.5

59.0

59.5

60.0

60.5

61.0

61.5

62.0

62.5

63.0

63.5

64.0

64.5 65.0

65.5

66.0

66.5

67.0

67.5

68.0

68.5

69.0

69.5

70.0

70.5

71.0

71.5

72.0

72.5

73.0

73.5

74.0

74.5

HD25

75.0

75.5

76.0

76.5

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

81.0

81.5

82.0

32.5

33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

46.5

47.0

47.5

48.0

48.5

49.0

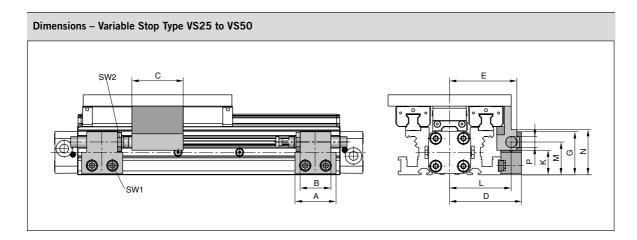
49.5

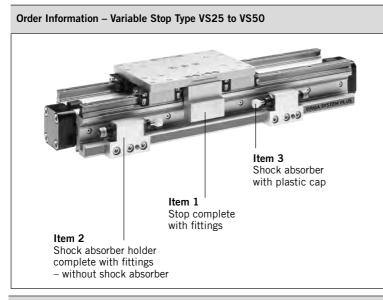
		FO			
		OSP-P			
x	HD25	HD32	HD40	HD50	x
00	50.0	75.0	50.0	75.0	50
01	50.5	75.5	50.5	75.5	51
02	51.0	76.0	51.0	76.0	52
03	51.5	76.5	51.5	76.5	53
04	52.0	77.0	52.0	77.0	54
05	52.5	77.5	52.5	77.5	55
06	53.0	78.0	53.0	78.0	56
07	53.5	78.5	53.5	78.5	57
08	54.0	79.0	54.0	79.0	58
09	54.5	79.5	54.5	79.5	59
10	55.0	80.0	55.0	80.0	60
11	55.5	80.5	55.5	80.5	61
12	56.0	81.0	56.0	81.0	62
13	56.5	81.5	56.5	81.5	63
14	57.0	82.0	57.0	82.0	64
15	57.5	82.5	57.5	82.5	65
16	58.0	83.0	58.0	83.0	66
17	58.5	83.5	58.5	83.5	67
18	59.0	84.0	59.0	84.0	68
19	59.5	84.5	59.5	84.5	69
20	60.0	85.0	60.0	85.0	70
21	60.5	85.5	60.5	85.5	71
22	61.0	36.0	61.0	86.0	72
23	61.5	36.5	61.5	86.5	73
24	62.0	37.0	62.0	87.0	74
25	62.5	37.5	62.5	87.5	75
26	63.0	38.0	63.0	88.0	76
27	63.5	38.5	63.5	88.5	77
28	64.0	39.0	64.0	89.0	78
29	64.5	39.5	64.5	89.5	79
30	65.0	40.0	65.0	90.0	80
31	65.5	40.5	65.5	90.5	81
32	66.0	41.0	66.0	91.0	82
33	66.5	41.5	66.5	91.5	83
34	67.0	42.0	67.0	92.0	84
35	67.5	42.5	67.5	92.5	85
36	68.0	43.0	68.0	93.0	86
37	68.5	43.5	68.5	43.5	87
38	69.0	44.0	69.0	44.0	88
39	69.5	44.0	69.5	44.5	89
40	70.0	44.5	70.0	44.5	90
40	70.5	45.5	70.0	45.5	90
41					91
42	71.0	46.0	71.0	46.0	92
43					93
	72.0	47.0	72.0	47.0	94
45	-	47.5	_	47.5	
46	73.0	48.0	73.0	48.0	96
47	73.5	48.5	73.5	48.5	97
48	74.0	49.0	74.0	49.0	98
49	74.5	49.5	74.5	49.5	99

Note:

the dimension FO is derived from the last two digits of the stroke:

Example:

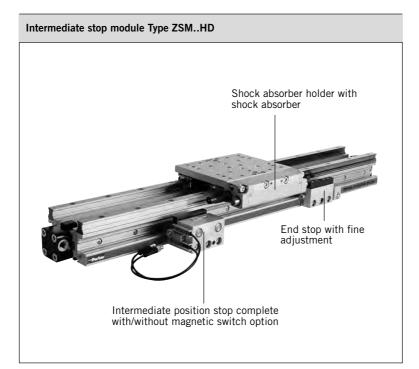

Stroke 1525 mm


For a cylinder OSP-P25 the adjacent table indicates that for x = 25 mm: F0 = 62.5 mm

The right to introduce technical modifications is reserved

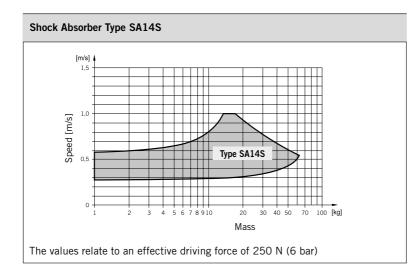
Dimension Table	Dimension Table [mm] – Variable Stop Type VS25 to VS50														
Series	Туре	Α	В	С	D	Е	G	к	L	м	Ν	Р	SW1	SW2	
OSP-HD25	VS25	40	30	50	70	65.5	42	26	60	32	42	M12 x 1	5	16	
OSP-HD32	VS32	60	40	54	73	71	44	28	63	34	53	M14 x 1.5	5	17	
OSP-HD40	VS40	84	52	55	96	92	59	35	82	45	61	M20 x 1.5	5	24	
OSP-HD50	VS50	84	-	60	107	105	66	37	89	49	66	M25 x 1.5	5	30	

Shock Absorber Selection


For shock absorber selection in dependence on mass and speed see page 66, 67.

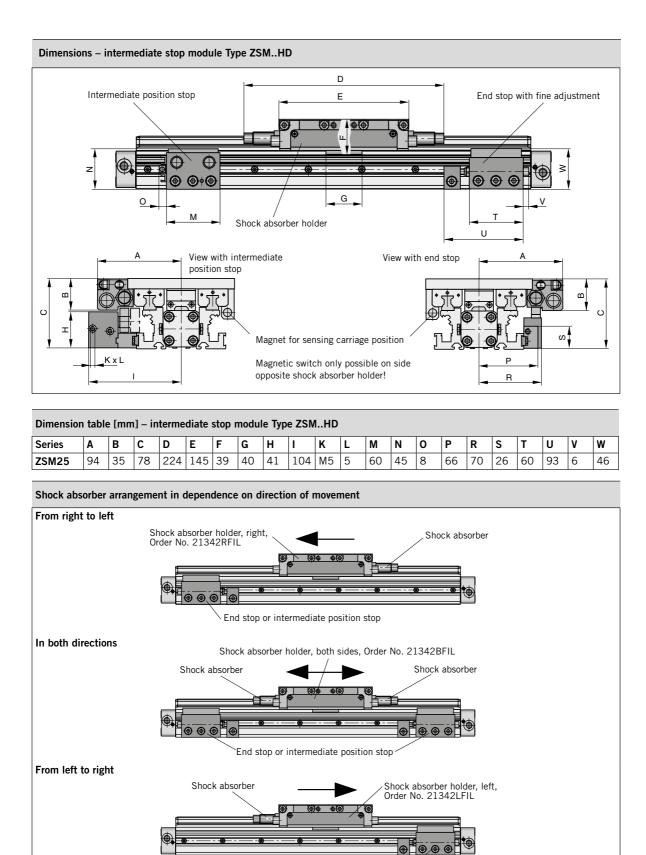
Orde	Order Instructions – Variable Stop Type VS25 to VS50 without cylinder and HD-guide												
Item	m Description Size												
		VS25		VS50									
		Туре	Order-No.	Туре	Order-No.	Туре	Order-No.	Туре	Order-No.				
1	Stop, complete	-	21257FIL	-	21258FIL	-	21259FIL	-	21260FIL				
2	Shock absorber holder, complete	-	21202FIL	-	21203FIL	-	21204FIL	-	21205FIL				
3*	Shock absorber, soft	SA12S2N	7723FIL	SA14	7708FIL	SA20	7930FIL	SAI25	7712FIL				
5	Shock absorber, hard	SA12S	7707FIL	SA14S	7709FIL	SA20S	7711FIL	SAI25S	7713FIL				

* Shock absorber with plastic cap (see page 66, 67)


Note: Order instructions for VS in combination with the HD Guide see page 86, pos.18

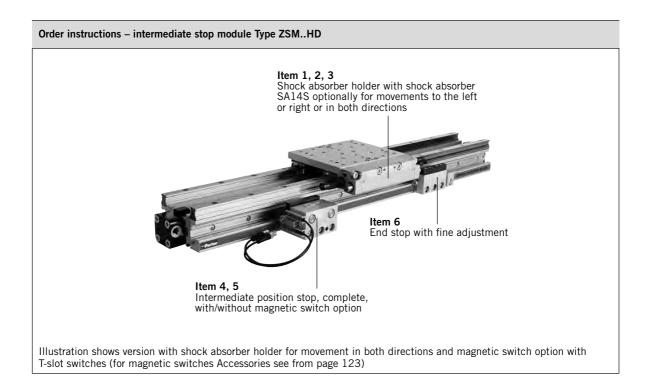
Technical data

Temperature range	-10°C to +70°C
Operating pressure range	4 – 8 bar
Intermediate position grid	85 mm


Intermediate stop module

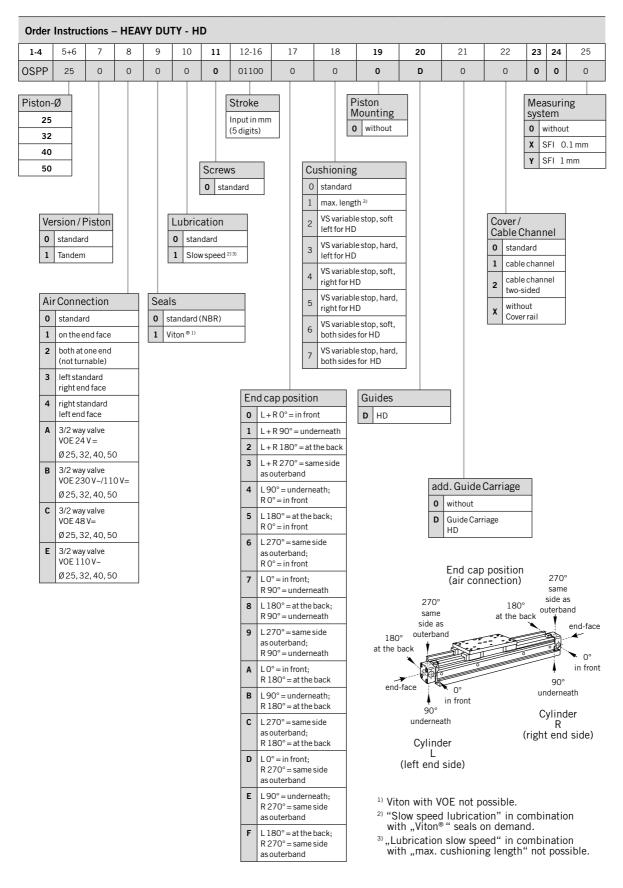
The intermediate stop module ZSM allows the guide carriage to stop at any desired intermediate positions with high accuracy. It can be retrofitted. Depending on the application, i.e. the number of intermediate stops, one or more intermediate position stops can be used. The intermediate position stops can be retracted and extended without the need for the guide carriage to be moved back out of position. Therefore the guide carriage can be made to stop at the defined intermediate positions in any order.

ORIGA intermediate stop module ZSM:


- Allows stopping at any intermediate positions
- Intermediate position stops can be located steplessly anywhere along the whole stroke length
- Movement to the next position without reverse stroke
- Compact unit
- Cost-effective positioning module without electrical or electronic components
- Option: end stop with fine adjustment

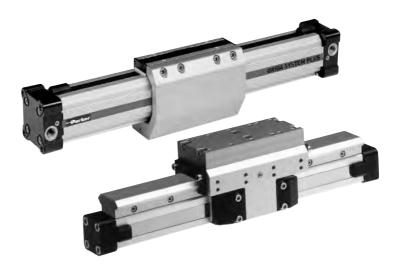
End stop or intermediate position stop

Order instructions - intermediate stop module Type ZSM..HD


Item	Description	For intermediate stop module	Order-No.
1*	Shock absorber holder with shock absorber SA14S, both sides	ZSM25HD	21342BFIL
2*	Shock absorber holder with shock absorber SA14S, left	ZSM25HD	21342LFIL
3*	Shock absorber holder with shock absorber SA14S, right	ZSM25HD	21342RFIL
4	Intermediate position stop complete, without magnetic switch option	ZSM25HD	21343FIL
5	Intermediate position stop complete, with magnetic switch option	ZSM25HD	21344FIL
6	End stop with fine adjustment	ZSM25HD	21346FIL

* The shock absorbers are installed in the shock absorber holder and adjusted in our workshop.

Note:


For movement onwards from the intermediate position, the intermediate position stop must advance. The intermediate position stop can only advance if both cylinder chambers of the OSP-P cylinder are pressurized.

Active and Passive Brakes Series OSP-P

Contents

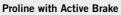
Description	Page
Overview	88
Standard cylinder with Active brake	89-92
Plain bearing SLIDELINE with Active brake	49-51
Aluminium roller guide PROLINE with Active brake	59-61
Plain bearing SLIDELINE with Passive brake Multibrake	93-96
Aluminium roller guide PROLINE with Passive brake Multibrake	97-99

The right to introduce technical modifications is reserved

Versions:

- ACTIVE Brake
- Plain bearing guide with integrated ACTIVE Brake
- Aluminium roller guide with integrated ACTIVE Brake
- Plain bearing guide with PASSIVE Brake
- Aluminium roller guide with
 PASSIVE Brake

Active Brake for pneumatic linear drive Series OSP-P Piston diameters 25 - 80 mm.


See page 89-92

Slideline with Active Brake

Plain bearing guide SLIDELINE - SL with integrated ACTIVE Brake Piston diameters 25 - 50 mm.

See page 49-51

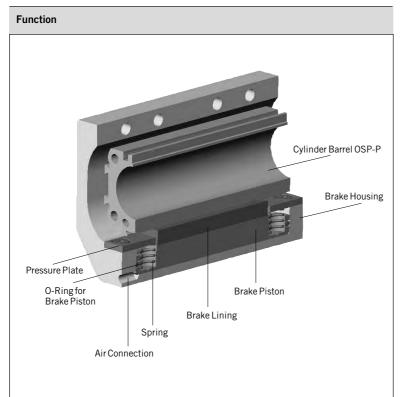
Aluminium roller guide PROLINE - PL with integrated ACTIVE Brake Piston diameters 25 - 50 mm.

See page 59-61

Multibrake with Slideline

MULTI BRAKE – PASSIVE Brake with plainbearing guide SLIDELINE - SL Piston diameter 25 - 80 mm.

See page 93-96


Multibrake with Proline

MULTI BRAKE – PASSIVE Brake with aluminium roller guide PROLINE - PL Piston diameters 25 - 50 mm.

See page 97-99

Forces	Forces and Weights													
				Mass[kg]										
Series	For linear	Max. braking	Brake pad way	Linear driv	e with brake									
Jenes	drive	force [N] (1	[mm]	0 mm stroke	increase per 100 mm stroke	Brake *								
AB 25	OSP-P25	350	2.5	1.0	0.197	0.35								
AB 32	OSP-P32	590	2.5	2.02	0.354	0.58								
AB 40	OSP-P40	900	2.5	2.83	0.415	0.88								
AB 50	OSP-P50	1400	2.5	5.03	0.566	1.50								
AB 63	OSP-P63	2170	3.0	9.45	0.925	3.04								
AB 80	OSP-P80	4000	3.0	18.28	1.262	5.82								
				0										

(1 - at 6 bar)

both chambers pressurised with 6 bar Braking surface dry – oil on the braking surface will reduce the braking force

* Please Note:

The mass of the brake has to be added to the total moving mass when using the cushioning diagram.

Active Brake

Series AB 25 to 80 for linear drive • Series OSP-P

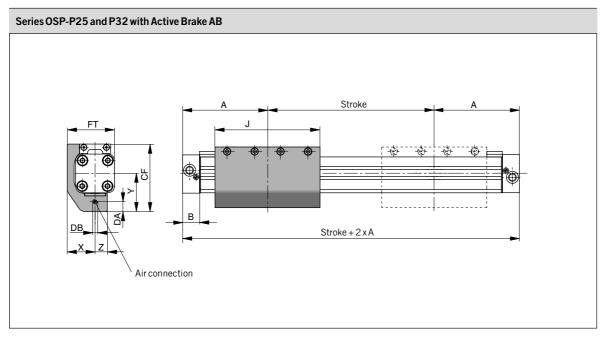
Features:

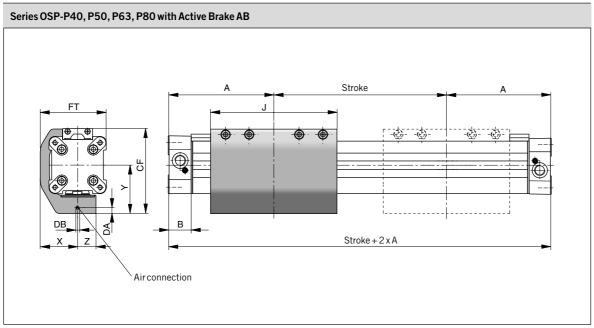
- Actuated by pressurisation
- Released by spring actuation
- Completely stainless version
- Holds position, even under changing load conditions

For further technical data, please refer to the data sheets for linear drives OSP-P (see from page 15).

Note:

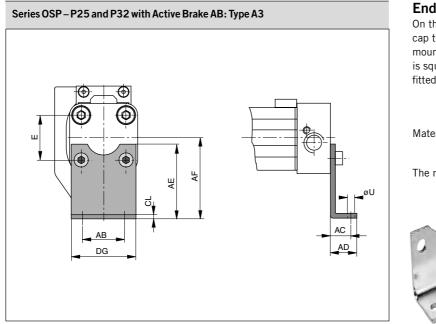
For combinations Active Brake AB + SFI-plus + Magnetic Switch contact our technical department please.


Active brake in combination with Basic Cylinder see page 24, pos. 20


0

The right to introduce technical modifications is reserved

For additional information on loads, forces and moment, please refer from page $16\,$



Dimension Table	e[mm]									
Series	Α	В	J	X	Y	Z	CF	DA	DB	FT
AB 25	100	22	117	29.5	43	13	74	4	M5	50
AB 32	125	25.5	151.4	36	50	15	88	4	M5	62
AB 40	150	28	151.4	45	58	22	102	7	M5	79.5
AB 50	175	33	200	54	69.5	23	118.5	7.5	M5	97.5
AB 63	215	38	256	67	88	28	151	9	G1/8	120
AB 80	260	47	348	83	105	32	185	10	G1/8	149

End Cap Mountings

On the end-face of each cylinder end cap there are four threaded holes for mounting the cylinder. The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.

Series OSP-P25, P32: Material: Galvanised steel

The mountings are supplied in pairs.

Series OSP - P40, P50, P63, P80 with Active Brake AB: Type C3 ¢ øU ш Ц Щ AB Е AD DG

Series OSP-Material: P40, P50, P63, P80: Anodised aluminium

The mountings are supplied in pairs.

Stainless steel version on request.

20339FIL

20350FIL

20821FIL

20822FIL

104

130

_

Dimension Table [mm] Ε øU AB CL Order No. Type A3 | Type C3 AC AD AE AF DG Series AB 25 27 5.8 27 16 22 45 49 2.5 39 2060FIL 42 52 3060FIL AB 32 36 6.6 36 18 26 3 50 AB 40 54 9 30 12.5 24 46 60 68 AB 50 70 9 40 12.5 24 54 72 86 _

15

17.5

The right to introduce technical modifications is reserved

AB 63

AB 80

78

96

11

14

48

60

0	1
Э	L

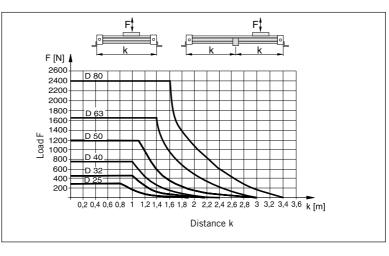
30

35

76

88

93



Mid Section Support

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive.

The diagrams show the maximum permissible unsupported length in relation to loading. Deflection of 0.5 mm max. between supports is permissible.

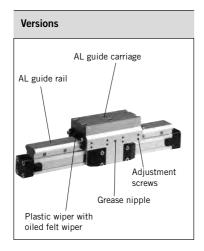
The mid section supports are attached to the dovetail rails, and can take axial loads.

Mid Section Supports

Note to Type E3:

Mid section supports can only be mounted opposite of the brake housing.

Stainless steel version available on request.


Series OSP-P25 to P80 with Active Brake AB: Type E3 (Mounting from above / below with through-bolt) DQ ᠶᡗ᠊ᢤ חר (H) ۳ øUU Φ øU H Ч SD Ш DK DO DM DP DN

Dimension T	Dimension Table [mm]														
Series	U	UU	AF	DE	DH	DK	DM	DN	DO	DP	DQ	DR	DS	Order no. Type E3	
AB 25	5.5	10	49	16	65	26	40	47.5	36	50	34.5	35	5.7	20353FIL	
AB 32	5.5	10	52	16	68	27	46	54.5	36	50	40.5	32	5.7	20356FIL	
AB 40	7	-	60	23	83	34	53	60	45	60	45	32	-	20359FIL	
AB 50	7	-	72	23	95	34	59	67	45	60	52	31	-	20362FIL	
AB 63	9	-	93	34	127	44	73	83	45	65	63	48	-	20453FIL	
AB 80	11	-	110	39.5	149.5	63	97	112	55	80	81	53	-	20819FIL	

Accessories for linear drives with Active Brakes - please order separately

Description	For details information, see:
Clevis mounting	Page 104
Adaptor profile	Page 118
T-groove profile	Page 119
Connection profile	Page 120
Magnetic switch (can only be mounted opposite of the brake housing)	Page 123-126
Incremental displacement measuring system SFI-plus	Page 129-133

Function:

The Multi-Brake is a passive device. When the air pressure is removed the brake is actuated and movement of the cylinder is blocked. The brake is released by pressurisation.

Series MB-SL 25 to 80 for Linear-drive Aluminium[`]plain Wear resistant Series OSP-P bearing guide Slideline brake lining, for high loads and for long service life moments The high friction, wear resistant brake Features: linings allow the Multi-Brake to be • Brake operated by spring actuation used as a dynamic brake to stop cylin-• Brake release by pressurisation der movement in the shortest possible • Anodised aluminium rail, with time. The powerful springs also allow

the Multi-Brake to be used effectively

in positioning applications.

Springs for maximum

brake forces

Brake piston

Function

Loads, Forces and Moments Fz <u>ک</u> Mz Μv

Technical Data:

The table shows the maximum values for light, shock-free operation, which must not be exceeded even in dynamic operation.

Load and moment data are based on speeds v < 0.2 m/s.

Operating pressure 4.5 - 8 bar A pressure of 4.5 bar is required to release the brake.

For further technical information, please refer to the data sheets for linear drives OSP-P (see from page 15) ¹⁾ Braking surface dry – oil on the braking surface will reduce the braking force

Multi-Brake

Slideline SL

SYSTEM PLUS

prism shaped slide elements

• Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the

• Replenishable guide lubrication

by integrated grease nipples · Blocking function in case of

• Intermediate stops possible

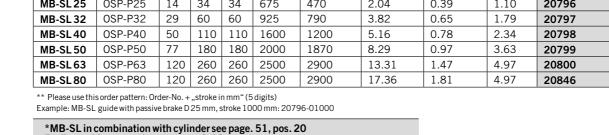
• Adjustable plastic slide elements

Passive Brake

with plain bearing guide

2) Please note:

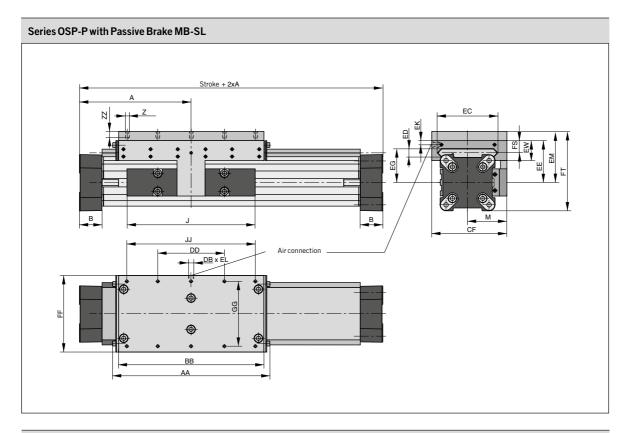
slideway


pressure loss

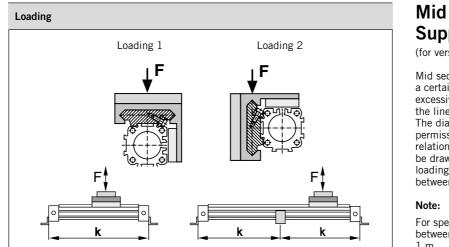
in the cushioning diagram, the mass of the guide carriage has to be added to the total moving mass.

Series	For linear drive	Max	x. mome [Nm]	ents	Max. loads [N]	Max. brake force [N] ¹⁾	with	near drive guide g]	Mass ²⁾ guide carriage	Order-No. ** MB-SL Guide with
		Мx	My	Mz	Fy, Fz		with 0 mm stroke	increase per 100 mm stroke	[kg]	passivebrake without cylin- der *
MB-SL 25	OSP-P25	14	34	34	675	470	2.04	0.39	1.10	20796
MB-SL 32	OSP-P32	29	60	60	925	790	3.82	0.65	1.79	20797
MB-SL40	OSP-P40	50	110	110	1600	1200	5.16	0.78	2.34	20798
MB-SL 50	OSP-P50	77	180	180	2000	1870	8.29	0.97	3.63	20799
MB-SL63	OSP-P63	120	260	260	2500	2900	13.31	1.47	4.97	20800
MB-SL80	OSP-P80	120	260	260	2500	2900	17.36 1.81		4.97	20846

For **linear drives** overview see page 9-13 For **mountings** see page 107-115


93

Tel: +45 63 12 83 00 | Email: ps@hymatik.com | www.hymatik.com | Hvidkaervej 27a, DK-5250 Odense SV, Denmark


The right to introduce technical modifications is reserved

Dimensio	Dimension Table [mm]																							
Series	Α	В	J	М	Z	AA	BB	DB	DD	CF	EC	ED	EE	EG	EK	EL	ЕМ	EW	FF	FT	FS	GG	11	ZZ
MB-SL25	100	22	117	40,5	M6	162	142	M5	60	72.5	47	12	53	39	9	5	73	30	64	93.5	20	50	120	12
MB-SL32	125	25.5	152	49	Μ6	205	185	G1/8	80	91	67	14	62	48	7	10	82	33	84	108	21	64	160	12
MB-SL40	150	28	152	55	Μ6	240	220	G1/8	100	102	77	14	64	50	6.5	10	84	34	94	118.5	21.5	78	200	12
MB-SL50	175	33	200	62	Μ6	284	264	G1/8	120	117	94	14	75	56	10	12	95	39	110	138.5	26	90	240	12
MB-SL63	215	38	256	79	Μ8	312	292	G1/8	130	152	116	18	86	66	11	12	106	46	152	159	29	120	260	13
MB-SL80	260	47	348	96	M8	312	292	G1/8	130	169	116	18	99	79	11	12	119	46	152	185	29	120	260	13

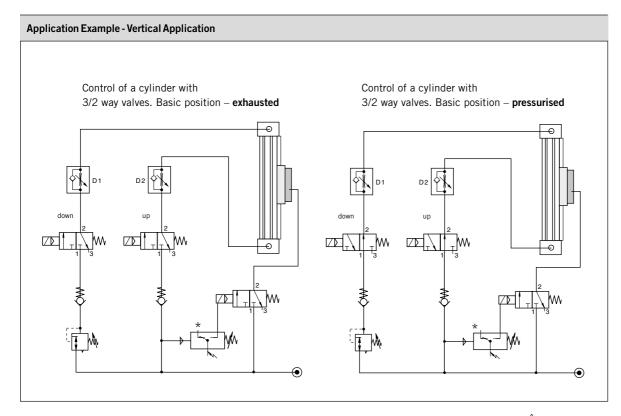
Mid Section Support

(for versions see page 106, 109)

Mid section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive.

The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissable.

For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.



95

The right to introduce technical modifications is reserved

Control Examples

Under normal operating circumstances the pressure switch is closed and the air flows through the 3/2 way solenoid valves from port 1 to 2, thus lifting the brake from the rail (operating condition).

The brake is pressurised by means of a 3/2 way valve in combination with a pressure switch. When there is a pressure loss, the brake is actuated by

the pressure switch. When the air pressure is restored to both cylinder chambers, the brake is lifted and the linear drive can be moved again. The speed regulating valves D1 and D2 control the speed of the linear drive, and have no influence on the brake. The two non-return valves give the system a higher stability. The pressure regulating valve is used to compensate for the downward force in this vertical application.

Please note: Before the brake is lifted

Before the brake is lifted, make sure that both air chambers of the linear drive are pressurised. Small diameter tubing, fittings and

valves with a nominal diameter, and tubing that is too long all change the reaction time of the brake!

* Tip:

The pressure switch actuates the brake when the pressure drops below the set value.

Function:

The Multi-Brake is a passive device. When the air pressure is removed the brake is actuated and movement of the cylinder is blocked. The brake is released by pressurisation. The high friction, wear resistant brake linings allow the Multi-Brake to be used as a dynamic brake to stop cylinder movement in the shortest possible time. The powerful springs also allow the Multi-Brake to be used effectively in positioning applications.

Springs for

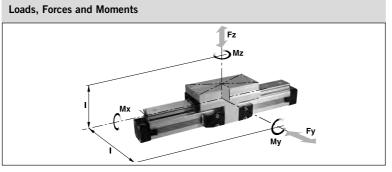
brake forces

Brake pistor

maximum

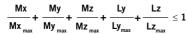
Function

Wear resistant


for long service life

Roller guide Proline for high

precision and velo-


cities

brake lining,

Technical Data

The table shows the maximal permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equasion applies:

The sum of the loads should not exceed >1. With a load factor of less than 1, service life is 8000 km

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

Operating Pressure 4.5 - 8 bar. A pressure of min. 4.5 bar release the brake. ¹⁾ Braking surface dry – oil on the braking surface will reduce the braking force

²⁾ Please note: In the cushioning diagram, the mass of the guide carriage has to be added to the total moving mass.

Hvidkaervej 27a, DK-5250 Odense SV, Denmark

Series	For linear drive	Ма	x. mome [Nm]	ents	Max. loads [N]	Max. brake force [N] ¹⁾	with	inear drive guide kg]	Mass ²⁾ guide carrriage	Order-No. ** MB-PL Guide with
		Мx	My	Mz	Fy, Fz		with 0 mm stroke	increase per	[kg]	passivebrake
							Ommisticke	100 mm stroke		without cylinder *
MB-PL25	OSP-P25	16	39	39	857	315	2.14	0.40	1.24	20864
MB-PL32	OSP-P32	29	73	73	1171	490	4.08	0.62	2.02	20865
MB-PL40	OSP-P40	57	158	158	2074	715	5.46	0.70	2.82	20866
MB-PL50	OSP-P50	111	249	249	3111	1100	8.60	0.95	4.07	20867

** Please use this order pattern: Order-No. + "stroke in mm" (5 digits)

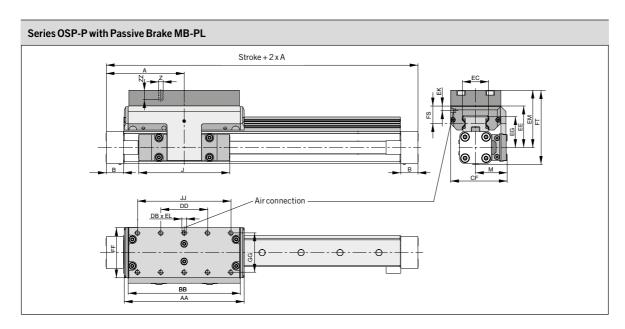
Tel: +45 63 12 83 00 | Email: ps@hymatik.com | www.hymatik.com |

Example: MB-PL guide with passive brake, D25 mm, stroke 1000 mm: 20864-01000

***MB-PL in combination with cylinder see page 61, pos. 20** For **linear drives** overview see page 9-13 For **mountings** see page 107-115

The right to introduce technical modifications is reserved

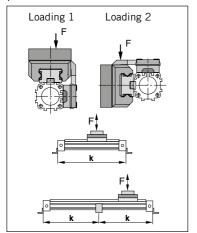
Multi-Brake Passive Brake with Aluminium Roller Guide Proline PL



Series MB-PL 25 to 50 for Linear-drive • Series OSP-P

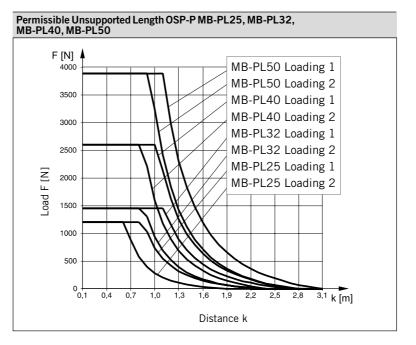
Features:

- Brake operated by spring actuation
- Brake release by pressurisation
- Composite sealing system with
- plastic and felt wiper elements to remove dirt and lubricate the slideway
- Blocking function in case of pressure loss
- Intermediate stops possible

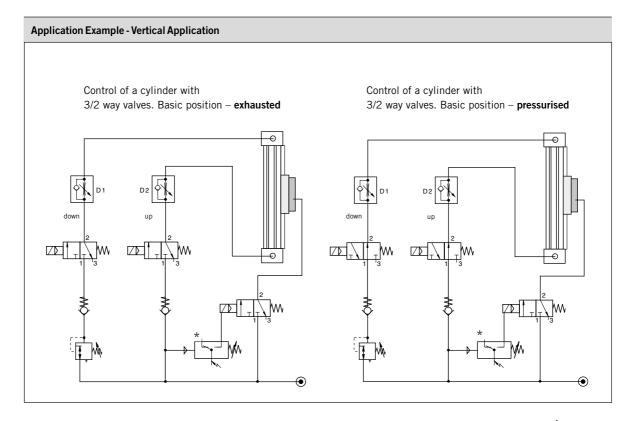


Dimens	Dimension Table [mm] Series OSP-P MB-PL25, MB-PL32, MB-PL40, MB-PL50																					
Series	Α	В	J	М	Z	AA	BB	DB	DD	CF	EC	EE	EG	EK	EL	EM	FF	FS	FT	GG	11	ZZ
MB-PL25	100	22	117	40.5	Μ6	154	144	M5	60	72.5	32.5	53	39	9	5	73	64	23	93.5	50	120	12
MB-PL32	125	25.5	152	49	Μ6	197	187	G1/8	80	91	42	62	48	7	10	82	84	25	108	64	160	12
MB-PL40	150	28	152	55	Μ6	232	222	G1/8	100	102	47	64	50.5	6.5	10	84	94	23.5	118.5	78	200	12
MB-PL50	175	33	200	62	M6	276	266	G1/8	120	117	63	75	57	10	12	95	110	29	138.5	90	240	16

Mid Section Support


(For versions see page 106, 109)

Mid section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading. A distinction must be drawn between loading 1 and loading 2. Deflection of 0.5 mm max. between supports is permissible.



Note:

For speeds v > 0.5 m/s the distance between supports should not exceed 1 m.

Control Examples

Under normal operating circumstances the pressure switch is closed and the air flows through the 3/2 way solenoid valves from port 1 to 2, thus lifting the brake from the rail (operating condition). The brake is pressurised by means of a 3/2 way valve in combination with a pressure switch. When there is a pressure loss, the brake is actuated by the pressure switch. When the air pressure is restored to both cylinder chambers, the brake is lifted and the linear drive can be moved again. The speed regulating valves D1 and D2 control the speed of the linear drive, and have no influence on the brake. The two non-return valves give the system a higher stability. The pressure regulating valve is used to compensate for the downward force in this vertical application.

Please note:

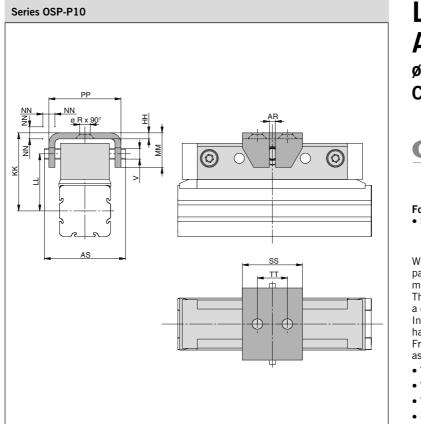
Before the brake is lifted, make sure that both air chambers of the linear drive are pressurised.

Small diameter tubing, fittings and valves with a nominal diameter, and tubing that is too long all change the reaction time of the brake!

* Tip:

The pressure switch actuates the brake when the pressure drops below the set value.

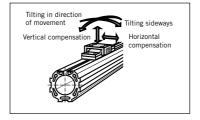
Linear Drive-Accessories (Mountings and Magnetic Switches) Series OSP-P


Contents

Description	Page
Overview	102
Clevis Mounting	103-104
End Cap Mountings	105
End Cap Mountings (for Linear Drives with guides)	107, 108, 110, 112, 113
Mid-Section Support	106
Mid-Section Support (for Linear Drives with guides)	107, 109, 111, 114, 115
Inversion Mounting	117
Adaptor Profile	118
T-Slot Profile	119
Connection Profile	120
Duplex Connection	121
Multiplex Connection	122
Magnetic Switch for T-Nut mounting P8S-G	123-126
Magnetic Switch ATEX-version 🐵	on request
Cable Cover	127

Linear Drive Acccessories for Series OSP-P		
Description		
Clevis Mounting		Page 103-104
End Cap Mountings		Page 105
End Cap Mountings		From page 107
(for Linear Drives with guides)		
Mid-Section Support		Page 106
Mid-Section Support		From page 107
(for Linear Drives with guides)	-	
Inversion Mounting		Page 117
Adaptor Profile		Page 118
T-Slot Profile		Page 119
Connection Profile	00	Page 120
Dulex Connection		Page 121
Multiplex Connection		Page 122
Magnetic Switch for T-Nut mounting P8S-G		Page 123-126
Magnetic Switch, ATEX-version $\textcircled{\sc op}$	-	on request
Cable cover		Page 127

Linear Drive Accessories ø 10 mm Clevis Mounting


For Linear-drive • Series OSP-P

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.

In the drive direction, the mounting has very little play.

Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

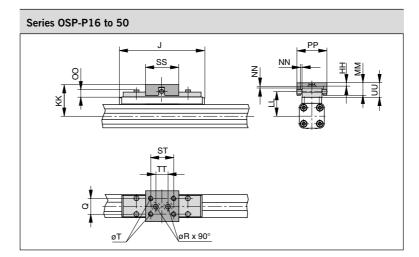
	Dimension Table [mm] Order instructions in combination with basic cylinder see page 24, pos. 19 For series ØR V AR AS HH KK LL MM NN* PP SS TT Order No.														
For series ØR V AR AS HH KK LL MM NN* PP SS TT Order No. Standard Standard Sta															
Į	OSP-P10	3.4	3.5	2	27	2	26	19	11.5	1	24	20	10	20971FIL	-

* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

For rodless pneumatic cylinder OSP-P overview see page 9-13

Linear Drive Accessories ø 16-80 mm

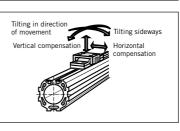
Clevis Mounting



For Linear-drive • Series OSP-P

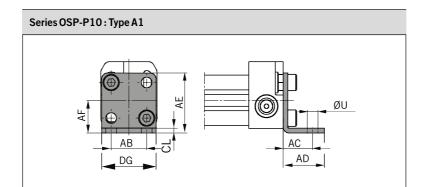
When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting. In the drive direction, the mounting has very little play. Freedom of movement is provided as follows:

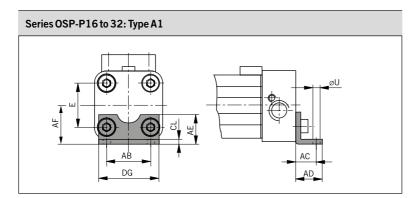
- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

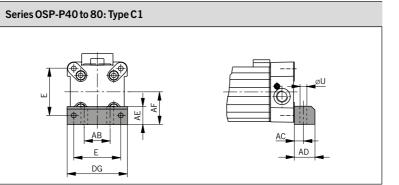

A stainless steel version is also available.

Series OSP-P63 and 80

Please note: When using additional inversion mountings, take into account the dimensions on page 117.




Dimensior	n Table	[mm]					Or	derins	tructio	ns in c	ombin	ation	vith ba	sic cy	linder	see page 24, pos. 19
For series	J	Q	Т	øR	HH	кк	LL	ММ	NN*	00	PP	SS	ST	TT	UU	Order No. Standard Stainless
OSP-P16	69	10	M4	4.5	3	34	26.6	10	1	8.5	26	28	20	10	11	20462FIL 20463FIL
OSP-P25	117	16	M5	5.5	3.5	52	39	19	2	9	38	40	30	16	21	20005FIL 20092FIL
OSP-P32	152	25	M6	6.6	6	68	50	28	2	13	62	60	46	40	30	20096FIL 20094FIL
OSP-P40	152	25	M6	-	6	74	56	28	2	13	62	60	46	-	30	20024FIL 20093FIL
OSP-P50	200	25	M6	-	6	79	61	28	2	13	62	60	46	-	30	20097FIL 20095FIL
OSP-P63	256	37	M8	-	8	100	76	34	3	17	80	80	65	-	37	20466FIL 20467FIL
OSP-P80	348	38	M10	-	8	122	96	42	3	16	88	90	70	-	42	20477FIL 20478FIL


* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

For rodless pneumatic cylinder OSP-P overview see page 9-13

Linear Drive Accessories ø 10-80 mm End Cap Mountings

For Linear-drive • Series OSP-P

On the end-face of each end cap there are four threaded holes for mounting the actuator.

The hole layout is square, so that the mounting can be fitted to the bottom, top or either side, regardless of the position chosen for the air connection.

Material: Series OSP-P10 – P32: Galvanised steel. Series OSP-P40 – P80: Anodized aluminium.

The mountings are supplied in pairs.

Dimension Table [mm]														
For series	E ØU AB AC AD AE AF CL						DG	Order-No. (pair) Type A1 Type C1						
OSP-P10	-	3.6	12	10	14	20.2	11	1.6	18.4	0240FIL	_			
OSP-P16	18	3.6	18	10	14	12.5	15	1.6	26	20408FIL	_			
OSP-P25	27	5.8	27	16	22	18	22	2.5	39	2010FIL	-			
OSP-P32	36	6.6	36	18	26	20	30	3	50	3010FIL	-			
OSP-P40	54	9	30	12.5	24	24	38	-	68	_	4010FIL			
OSP-P50	70	9	40	12.5	24	30	48	-	86	-	5010FIL			
OSP-P63	78	11	48	15	30	40	57	-	104	-	6010FIL			
OSP-P80	96	14	60	17.5	35	50	72	-	130	-	8010FIL			

For rodless pneumatic cylinder OSP-P overview see page 9-13

Linear Drive Series OSP-10, Type E1 (Mounting from above / below using a cap screw) **Accessories** ø 10-80 mm **Mid-Section Support** OSP øU ORIGA SYSTEM AN Δ. PILIS Series OSP-P16 to P80: Type E1 (Mounting from above / below using a cap screw) For Linear-drive • Series OSP-P DQ ØUU ØU Note on Types E1 and D1 (P16 – P80): The mid-section support can also H be mounted on the underside of the actuator, in which case its distance Ľ Ш ğ from the centre of the actuator is S DO different. DP DM DN For design notes, see page 17. Series OSP-16 to 80, Type D1 (Mounting from below with 2 screws) Stainless steel version on request. DQ Н ΣШ C DO DP R DF Dimension Table [mm] Series OSP-P10

For series	U	AF	AH	AJ	AK	AN	Order No.	
							Type E1	Type D1
OSP-P10	3.6	11	25.4	33.4	3.5	12	0250FIL	-

Dimension Table [mm] – Series OSP-P16 to P80																					
For series	R	ØU	ØUU	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DS	DT	EF	EM	EN	EQ	Order No. Type E1 Type D1	
OSP-P16	M3	3.4	6	15	20	29.2	24	32	36.4	18	30	27	6	3.4	6.5	32	20	36.4	27	20435FIL	20434FIL
OSP-P25	M5	5.5	10	22	27	38	26	40	47.5	36	50	34.5	8	5.7	10	41.5	28.5	49	36	20009FIL	20008FIL
OSP-P32	M5	5.5	10	30	33	46	27	46	54.5	36	50	40.5	10	5.7	10	48.5	35.5	57	43	20158FIL	20157FIL
OSP-P40	M6	7	-	38	35	61	34	53	60	45	60	45	10	-	11	56	38	63	48	20028FIL	20027FIL
OSP-P50	M6	7	-	48	40	71	34	59	67	45	60	52	10	-	11	64	45	72	57	20163FIL	20162FIL
OSP-P63	M8	9	-	57	47.5	91	44	73	83	45	65	63	12	-	16	79	53.5	89	69	20452FIL	20451FIL
OSP-P80	M10	11	-	72	60	111.5	63	97	112	55	80	81	15	-	25	103	66	118	87	20482FIL	20480FIL

For rodless pneumatic cylinder OSP-P overview see page 9-13

Overview																		
Mounting Type	Туре	16	М	UĽ	OL TIE	.IN BR/	NE E AKE	ype			P 25/	OW	ER		40/	40/	50/	50/
End cap mounting	Type A1								25 X	25	35	44	35	44		60	60	76
100 100 2	Type A2	0	0	0														<u> </u>
	Туре АЗ									ο	0		0					
End cap mounting, reinforced	Type B1		x	x						x	x	x	х	x				
1	Туре ВЗ								0									
	Type B4											0		o				
	Type B5																	
End cap mounting	Type C1				х	x	x	x							x	x	x	x
	Туре С2				ο	0												
	Туре СЗ						0	0							0		0	
	Type C4															0		0
Mid section support, small	Type D1	х	X	x	x	x	x	x	x	x	x	х	x	x	x	x	x	x
Mid section support, wide	Type E1	x	X	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
di F	Type E2	0	0	0	0	0												
	Type E3						0	0	o	0	0		0		0		0	
	Type E4											0		0		0		0
	Type E5																	

Linear Drive Accessories Mountings for Linear Drives fitted with OSP-Guides

For Linear-drives • Series OSP-P

Note:

For mountings and mid-section supports for linear drives with recirculating ball bearing guide STARLINE, for recirculating ball bearing guide KF, see page 110 to 115.

X = carriage mounted in top (12 o'clock position)

- 0 = carriage mounted in lateral
 - (3 or 9 o'clock position)
 - = available components
- ¹⁾ = not available for all sizes

For rodless pneumatic cylinder OSP-P see from page 9

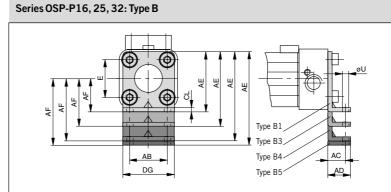
107

Tel: +45 63 12 83 00 | Email: ps@hymatik.com | www.hymatik.com | Hvidkaervej 27a, DK-5250 Odense SV, Denmark

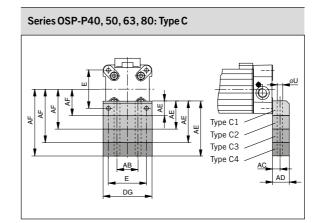
The right to introduce technical modifications is reserved

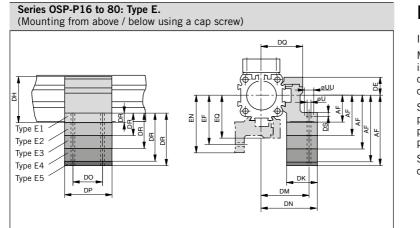
End cap mountings* Four internal screw threads are located


Four internal screw threads are located in the end faces of all OSP actuators for mounting the drive unit. End cap mountings may be secured across any two adjacent screws.


Material:

Series OSP-16, 25, 32: Galvanised steel Series OSP-40,50, 63, 80: Anodized aluminium


The mountings are supplied in pairs.


	ensio mens					(Dep	enda	ant o	n th	e mo	unti	ng ty	pe)		
Mount. type	Din AE for s		ions	5				AF for	size	;					
	16	25	32	40	50	63	80	16	25	32	40	50	63	80	
A1															
A2	27.5	33	34	-	-	-	-	30	37	44	-	-	-	-	
A3	1	45	42	-	1	-	-	-	49	52	-	-	-	-	
B1	-	42	55	-	-	-	-	-	22	30	-	-	-	-	
B3	55	-	-	-	-	-	-	42	-	-	-	-	-	-	
B4	-	80	85	-	-	-	-	-	60	60	-	-	-	-	
B5	-	-	90	-	-	-	-	-	-	65	-	-	-	-	
C1	-	-	-	24	30	40	50	-	-	-	38	48	57	72	
C2	-	-	-	37	39	-	-	-	-	-	51	57	-	-	
C3	-	-	-	46	54	76	88	-	-	-	60	72	93	110	
C4	-	-	-	56	77	-	-	-	-	-	70	95	-	-	

Dimension Table [mm]							
For series	E	øU	AB	AC	AD	CL	DG
OSP-P16	18	3.6	18	10	14	1.6	26
OSP-P25	27	5.8	27	16	22	2.5	39
OSP-P32	36	6.6	36	18	26	3	50
OSP-P40	54	9	30	12.5	24	-	68
OSP-P50	70	9	40	12.5	24	-	86
OSP-P63	78	11	48	15	30	-	104
OSP-P80	96	14	60	17.5	35	-	130

* see mounting instructions on page 107

Mid-Section Support

Information regarding type E1 and D1:

Mounting of the mid section supports is also possible on the lower side of the drive. In this case, please note the new centre line dimensions.

See layout information on pages 50, 55, pages 60, 65 pages 92, 95 and 98

Stainless steel version on request.

0

Series OSP-P16 to 80: Type D1 (Mounting from below with thread screw)		Dime – Dir						(Dep	enda	ant c	on th	e ma	ounti	ng ty	/pe)	
		Mount. type		nens size		s DR	1				men rsize		s AF			
			16	25	32	40	50	63	80	16	25	32	40	50	63	80
		D1	-	-	-	-	-	-	-	15	22	30	38	48	57	72
		E1	6	8	10	10	10	12	15	15	22	30	38	48	57	72
		E2	21	23	24	23	19	-	-	30	37	44	51	57	-	-
		E3	33	35	32	32	34	48	53	42	49	52	60	72	93	110
AF DF	Ī	E4	-	46	40	42	57	-	-	-	60	60	70	95	-	-
		E5	-	-	45	-	-	-	١	-	-	65	-	-	1	-

Dimension	Table	mmj																
For series	R	U	UU	DE	DF	DH	DK	DM	DN	DO	DP	DQ	DS	DT	EF	EM	EN	EQ
OSP-P16	M3	3.4	6	14.2	20	29.2	24	32	36.4	18	30	27	3.4	6.5	32	20	36.4	27
OSP-P25	M5	5.5	10	16	27	38	26	40	47.5	36	50	34.5	5.7	10	41.5	28.5	49	36
OSP-P32	M5	5.5	10	16	33	46	27	46	54.5	36	50	40.5	5.7	10	48.5	35.5	57	43
OSP-P40	M6	7	_	23	35	61	34	53	60	45	60	45	-	11	56	38	63	48
OSP-P50	M6	7	_	23	40	71	34	59	67	45	60	52	_	11	64	45	72	57
OSP-P63	M8	9	-	34	47.5	91	44	73	83	45	65	63	-	16	79	53.5	89	69
OSP-P80	M10	11	-	39.5	60	111.5	63	97	112	55	80	81	-	25	103	66	118	87

Mounting type (versions)				Order No size	•		
	16	25	32	40	50	63	80
A1 *)	20408FIL	2010FIL	3010FIL	-	-	-	-
A2 *)	20464FIL	2040FIL	3040FIL	-	-	-	-
A3 *)	-	2060FIL	3060FIL	-	-	-	-
B1 *)	-	20311FIL	20313FIL	-	-	-	-
B3 *)	20465FIL	-	-	-	-	-	-
B4 *)	-	20312FIL	20314FIL	-	_	-	-
B5*)	-	-	21141FIL	-	-	-	-
C1 *)	-	-	-	4010FIL	5010FIL	6010FIL	8010FIL
C2 *)	-	-	-	20338FIL	20349FIL	-	-
C3 *)	-	-	-	20339FIL	20350FIL	20821FIL	20822FIL
C4 *)	-	-	-	20340FIL	20351FIL	-	-
D1	20434FIL	20008FIL	20157FIL	20027FIL	20162FIL	20451FIL	20480FIL
E1	20435FIL	20009FIL	20158FIL	20028FIL	20163FIL	20452FIL	20482FIL
E2	20436FIL	20352FIL	20355FIL	20358FIL	20361FIL	-	-
E3	20437FIL	20353FIL	20356FIL	20359FIL	20362FIL	20453FIL	20819FIL
E4	-	20354FIL	20357FIL	20360FIL	20363FIL	-	-
E5	_	-	20977FIL	_	_	-	_

(* Pair

The right to introduce technical modifications is reserved

...

.

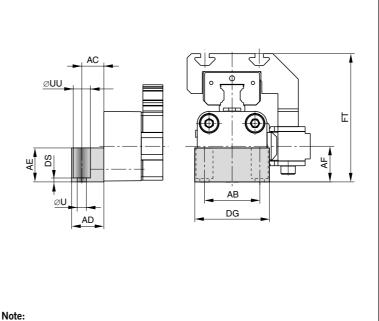
- - - -

Linear Drive Accessories Ø 25-50 mm

End Cap Mounting correspond to FESTO dimensions HP25-50

for Linear Drives with Recirculating Ball Bearing Guide

• Series OSP-P KF

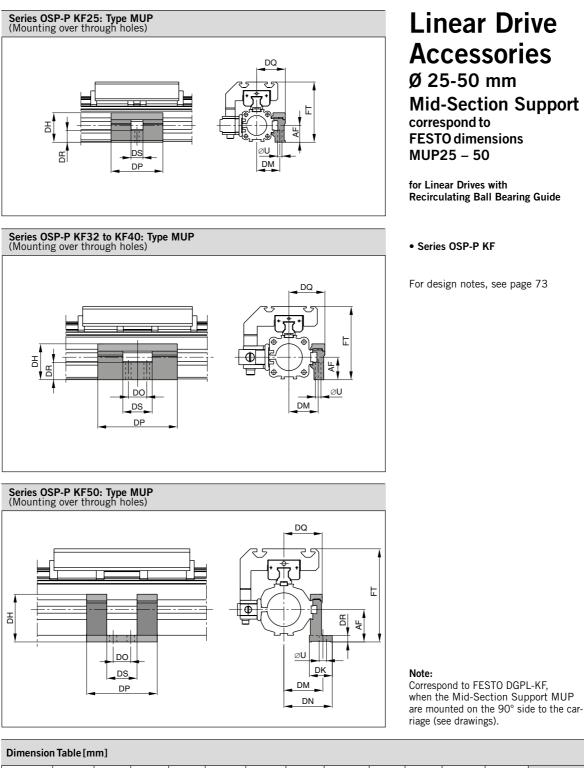

On the end-face of each end cap there are four threaded holes for mounting the actuator.

Material:

Series OSP-P KF25 – 50: Anodized aluminium.

The mountings are supplied in pairs.

Series OSP-P KF25 to KF50: Type HP (Correspond to FESTO dimensions)



Correspond to FESTO DGPL-KF, when the End Cap Mountings HP are mounted on the opposite side to the carriage (see drawing)

Dimension	n Table	e[mm]	I								
Series	ØU	AB	AC	AD	AE	AF	DG	DS	FT	ØUU	Order No.
HP25	5.5	32.5	13	19	20	21	44	2	75.5	10	21107FIL
HP32	6.6	38	17	24	24	27	52	3	87.5	11	21108FIL
HP40	6.6	45	17.5	24	24	35	68	2	104.5	11	21109FIL
HP50	9	65	25	35	35	48	86	6	138.5	15	21110FIL

110

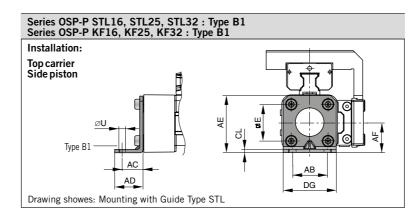
Linear Drive Accessories Ø 25-50 mm **Mid-Section Support** correspond to **FESTO** dimensions MUP25 - 50

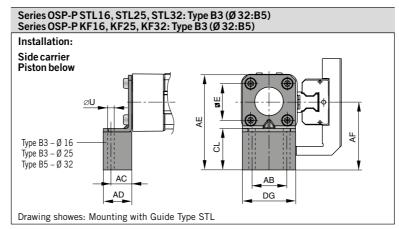
for Linear Drives with **Recirculating Ball Bearing Guide**

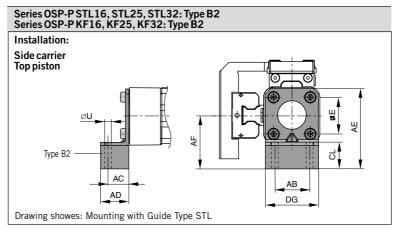
Series OSP-P KF

For design notes, see page 73

Dimensio	n Table	[mm]											
Series	ØU	AF	DH	DK	DM	DN	DO	DP	DQ	DR	DS	FT	Order No.
MUP25	5.5	21	36.9	-	29	-	-	65	36	14.5	15	75.5	21119FIL
MUP32	6.6	27	42.9	-	35	-	22	95	43	20.5	35	87.5	21120FIL
MUP40	6.6	35	58	-	40	-	22	95	48	28.5	35	104.5	21121FIL
MUP50	11	48	71	34	58	72	26	105	57	10	45	138.5	21122FIL

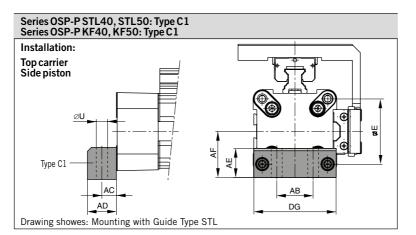

Linear Drive Accessories Ø 16 to 32 mm End Cap Mounting Type: B


for Linear Drives with Recirculating Ball Bearing Guide


• Series OSP-P STL • Series OSP-P KF

Material: Galvanised steel Anodized aluminium

The mountings are supplied in pairs.



Dimension Table [mm] for End Cap Mounting Type: B1 to B5

				-p		B .) P .					
For series	Mounting	E	ØU	AB	AC	AD	AE	AF	CL	DG	Order No. (pair)
OSP-P STL16	B1	18	3.6	18	10	14	28	15	2	26	21135FIL
OSP-P KF16	B2	18	3.6	18	10	14	43	30	17	26	21136FIL
	B3	18	3.6	18	10	14	55	42	29	26	21137FIL
OSP-P STL25	B1	27	5.8	27	16	22	42	22	2.5	39	20311FIL
OSP-P KF25	B2	27	5.8	27	16	22	57	37	17.5	39	21138FIL
	B3	27	5.8	27	16	22	69	49	29.5	39	21139FIL
OSP-P STL32	B1	36	6.6	36	18	26	55	30	3	50	20313FIL
OSP-P KF32	B2	36	6.6	36	18	26	69	44	17	50	21140FIL
	B5	36	6.6	36	18	26	90	65	9	50	21141FIL

Series OSP-P STL40, STL50: Type C4 (Ø 50: C3) Series OSP-P KF40, KF50: Type C4 (Ø 50: C3) Installation: Side carrier Piston below ØU 빌 ЧF ЧE Type C4 – Ø 40 Type C3 – Ø 50 AC AB AD DG Drawing showes: Mounting with Guide Type STL Series OSP-P STL40, STL50: Type C2 Series OSP-P KF40, KF50: Type C2

Ø 40 to 50 mm End Cap Mounting Type: C

for Linear Drives with Recirculating Ball Bearing Guide

- Series OSP-P STL
- Series OSP-P KF

Material:

Anodized aluminium

The mountings are supplied in pairs.

Dimension Tab	ole[mm]fo	or End	Cap N	lountir	ng Type	e: C1 t	oC4			
For series	Mounting	E	ØU	AB	AC	AD	AE	AF	DG	Order No. (pair)
OSP-P STL40	C1	54	9	30	12.5	24	24	38	68	4010FIL
OSP-P KF40	C2	54	9	30	12.5	24	37	51	68	20338FIL
	C4	54	9	30	12.5	24	56	70	68	20340FIL
OSP-P STL50	C1	70	9	40	12.5	24	30	48	86	5010FIL
OSP-P KF50	C2	70	9	40	12.5	24	39	57	86	20349FIL
	C3	70	9	40	12.5	24	54	72	86	20350FIL

Linear Drive Accessories Ø 16 to 50 **Mid-Section Support** Type: D1ST

for Linear Drives with **Recirculating Ball Bearing Guide**

 Series OSP-P STL • Series OSP-P KF

Note on Types D1ST The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the centre of the actuator is different.

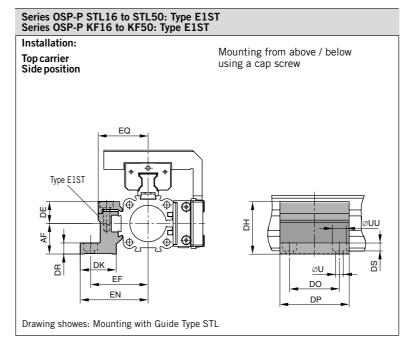
For design notes, see page 65 (Serie OSP-P STL) page 73 (Serie OSP-P KF)

Series OSP-P STL16 to STL50: Type D1ST Series OSP-P KF16 to KF50: Type D1ST Mountings from below with 2 screws EQ Н ц F EM R DL DO DP Drawing showes: Mounting with Guide Type STL

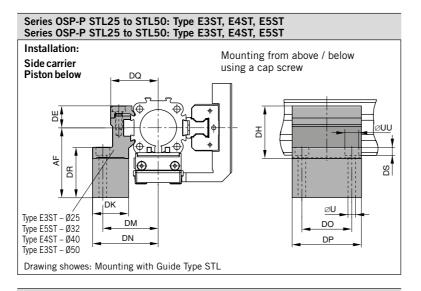
Dimension Table [mm] Mid-Section Support D1ST Mounting For series R AF DE DH DL DO DP DT EM EQ Order No. OSP-P .. Туре STL/KF16 D1ST M3 15 14.2 14.6 18 30 6.5 20 27 21125FIL 29.2 STL/KF25 D1ST M5 22 36 50 10 28.5 36 21126FIL 16 38 13 STL/KF32 D1ST Μ5 30 16 46 13 36 60 10 35.5 43 21127FIL D1ST M6 38 23 45 60 11 38 48 **21128FIL** STL/KF40 61 19 D1ST M6 48 23 STL/KF50 71 19 45 60 11 45 57 21129FIL

Order example: Type D1ST16

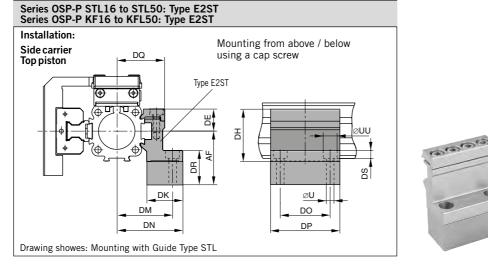
Order No. 21125FIL


Mid-Section Support Type: E1ST bis E5ST

for Linear Drives with **Recirculating Ball Bearing Guide**


• Series OSP-P STL

Series OSP-P KF



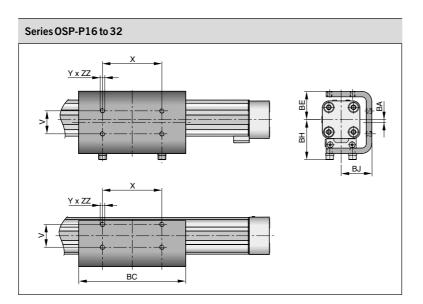
Mid-Section Support Type: E1ST to E5ST

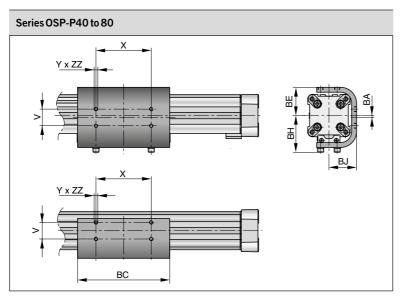
for Linear Drives with **Recirculating Ball Bearing Guide**

• Series OSP-P STL Series OSP-P KF

For Series OSP-P	Mounting Type	ØU	ØUU	AF	DE	DH	DK	DM	DN	DO	DP	DQ	DR	DS	EF	EN	EQ	IdentN
STL/KF16	E1ST	3.4	6	15	14.2	29.2	24	32	36.4	18	30	27	6	3.4	32	36.4	27	21130F
STL/KF16	E2ST	3.4	6	30	14.2	29.2	24	32	36.4	18	30	27	21	3.4	32	36.4	27	21142F
STL/KF25	E1ST	5.5	10	22	16	38	26	40	47.5	36	50	34.5	8	5.7	41.5	49	36	21131F
STL/KF25	E2ST	5.5	10	37	16	38	26	40	47.5	36	50	34.5	23	5.7	41.5	49	36	21143F
STL/KF25	E3ST	5.5	10	49	16	38	26	40	47.5	36	50	34.5	35	5.7	41.5	49	36	21148F
STL/KF32	E1ST	5.5	10	30	16	46	27	46	54.5	36	60	40.5	10	5.7	48.5	57	43	21132F
STL/KF32	E2ST	5.5	10	44	16	46	27	46	54.5	36	60	40.5	24	5.7	48.5	57	43	21144F
STL/KF32	E5ST	5.5	10	65	16	46	27	46	54.5	36	60	40.5	45	5.7	48.5	57	43	21151F
STL/KF40	E1ST	7	-	38	23	61	34	53	60	45	60	45	10	-	56	63	48	21133F
STL/KF40	E2ST	7	-	51	23	61	34	53	60	45	60	45	23	-	56	63	48	21145F
STL/KF40	E4ST	7	-	70	23	61	34	53	60	45	60	45	42	-	56	63	48	21150F
STL/KF50	E1ST	7	-	48	23	71	34	59	67	45	60	52	10	-	64	72	57	21134F
STL/KF50	E2ST	7	-	57	23	71	34	59	67	45	60	52	19	-	64	72	57	21146F
STL/KF50	E3ST	7	-	72	23	71	34	59	67	45	60	52	34	-	64	72	57	21149F

The right to introduce technical modifications is reserved


_ . .


.

_

Dimension Table [mm]

For series	V	X	Y	BA	BC	BE	BH	BJ	ZZ	Order No.
OSP-P16	16,5	36	M4	2	69	23	33	25	4	20446FIL
OSP-P25	25	65	M5	3	117	31	44	33,5	6	20037FIL
OSP-P32	27	90	M6	3	150	38	52	39,5	6	20161FIL
OSP-P40	27	90	M6	3	150	46	60	45	8	20039FIL
OSP-P50	27	110	M6	1	200	55	65	52	8	20166FIL
OSP-P63	34	140	M8	2,5	255	68	83,5	64	10	20459FIL
OSP-P80	36	190	M10	3,5	347	88	107,5	82	15	20490FIL

Note:

Order instructions in combination with basic cylinder see page 24, pos. 20

For rodless pneumatic cylinder OSP-P overwiew see page 9-13

Linear Drive Accessories ø 16-80 mm Inversion Mounting

For Linear-drive • Series OSP-P

In dirty environments, or where there are special space problems, inversion of the cylinder is recommended. The inversion bracket transfers the driving force to the opposite side of the cylinder. The size and position of the mounting holes are the same as on the standard cylinder.

Stainless steel version on demand.

Please note:

Other components of the OSP system such as **mid-section supports**, **magnetic switches** and **the external air passage for the P16**, can still be mounted on the free side of the cylinder.

Note:

When combining single end porting with inversion mountings, RS magnetic switches can only be mounted directly opposite to the external airsupply profile.

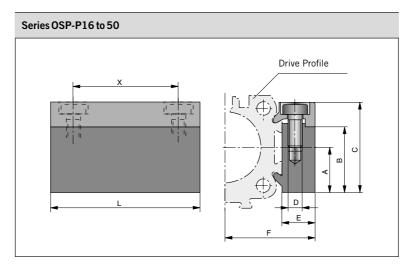
Important Note:

May be used in combination with Clevis Mounting, ref. dimensions on page 104.

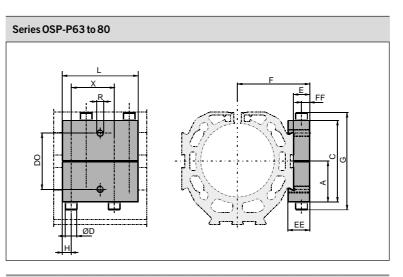
Tel: +45 63 12 83 00 | Email: ps@hymatik.com | www.hymatik.com | Hvidkaervej 27a, DK-5250 Odense SV, Denmark

Linear Drive Accessories ø 16-50 mm

Adaptor Profile

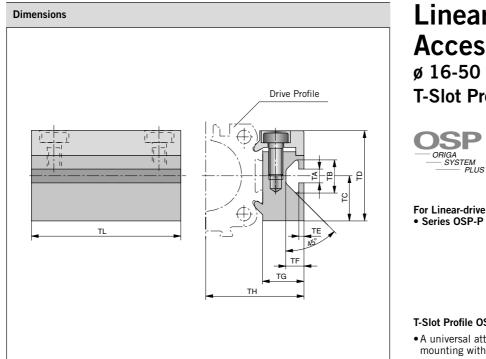


For Linear-drive • Series OSP-P


Adaptor Profile OSP

- A universal attachment for
- mounting of valves etc.
- Solid material

Dimension Table [mm]										
Α	В	С	D	E	F	L	X	Order No.		
								Standard	Stainless	
14	20.5	28	M3	12	27	50	38	20432FIL	20438FIL	
16	23	32	M5	10.5	30.5	50	36	20006FIL	20186FIL	
16	23	32	M5	10.5	36.5	50	36	20006FIL	20186FIL	
20	33	43	M6	14	45	80	65	20025FIL	20267FIL	
20	33	43	M6	14	52	80	65	20025FIL	20267FIL	
	A 14 16 16 20	A B 14 20.5 16 23 16 23 20 33	A B C 14 20.5 28 16 23 32 16 23 32 20 33 43	A B C D 14 20.5 28 M3 16 23 32 M5 16 23 32 M5 20 33 43 M6	A B C D E 14 20.5 28 M3 12 16 23 32 M5 10.5 16 23 32 M5 10.5 20 33 43 M6 14	A B C D E F 14 20.5 28 M3 12 27 16 23 32 M5 10.5 30.5 16 23 32 M5 10.5 36.5 20 33 43 M6 14 45	A B C D E F L 14 20.5 28 M3 12 27 50 16 23 32 M5 10.5 30.5 50 16 23 32 M5 10.5 36.5 50 20 33 43 M6 14 45 80	A B C D E F L X 14 20.5 28 M3 12 27 50 38 16 23 32 M5 10.5 30.5 50 36 16 23 32 M5 10.5 36.5 50 36 20 33 43 M6 14 45 80 65	A B C D E F L X Order No. Standard 14 20.5 28 M3 12 27 50 38 20432FIL 16 23 32 M5 10.5 30.5 50 36 20006FIL 16 23 32 M5 10.5 36.5 50 36 20006FIL 20 33 43 M6 14 45 80 65 2025FIL	



Dimension	Dimensions [mm]													
Series	A	С	ØD	Е	F	G	н	L	R	х	DO	EE	FF	Order-No.*
OSP-P63	34.8	70	10	14	62	83	7.5	65	M6	37	48	18.7	7	20792FIL
OSP-P80	34.8	70	10	14	75	83	7.5	65	M6	37	48	18.7	7	20792FIL
* Stainless	^s Stainless version													

For rodless pneumatic cylinder OSP-P overview see page 9-13

Linear Drive Accessories ø 16-50 mm **T-Slot Profile**

T-Slot Profile OSP

• A universal attachment for mounting with standard T-Nuts

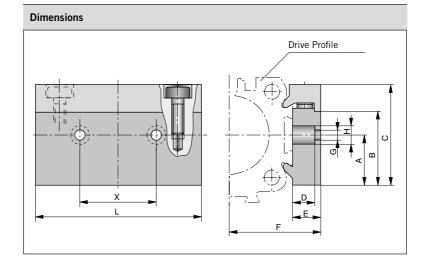
Dimension	Dimension Table [mm]										
For series	TA	ТВ	тс	TD	TE	TF	TG	тн	TL	Orde Standard	r No. Stainless
OSP-P16	5	11.5	14	28	1.8	6.4	12	27	50	20433FIL	20439FIL
OSP-P25	5	11.5	16	32	1.8	6.4	14.5	34.5	50	20007FIL	20187FIL
OSP-P32	5	11.5	16	32	1.8	6.4	14.5	40.5	50	20007FIL	20187FIL
OSP-P40	8.2	20	20	43	4.5	12.3	20	51	80	20026FIL	20268FIL
OSP-P50	8.2	20	20	43	4.5	12.3	20	58	80	20026FIL	20268FIL

Following T-nuts from the company ITEM

could be used:		
CylSeries	T-nut St 5	T-nut St 8
OSP-P16-32	•	
OSP-P40-50		•

The right to introduce technical modifications is reserved

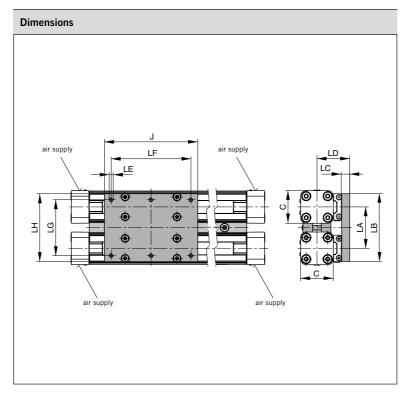
For rodless pneumatic cylinder OSP-P overview see page 9-13


Linear Drive Accessories

ø 16-50 mm **Connection Profile**

For combining • Series OSP-P

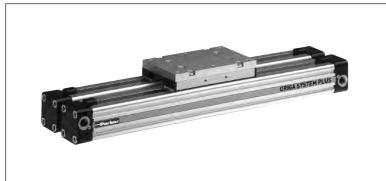
- with system profiles Series OSP-P with Series OSP-P


Dimension	Dimension Table [mm]											
For series	for mounting on the carrier of	A	В	C	D	E	F	G	Н	L	X	Order No.
OSP-P16	OSP25	14	20.5	28	8.5	12	27	5.5	10	50	25	20849FIL
OSP-P25	OSP32-50	16	23	32	8.5	10.5	30.5	6.6	11	60	27	20850FIL
OSP-P32	OSP32-50	16	23	32	8.5	10.5	36.5	6.6	11	60	27	20850FIL
OSP-P40	OSP32-50	20	33	43	8	14	45	6.6	11	60	27	20851FIL
OSP-P50	OSP32-50	20	33	43	8	14	52	6.6	11	60	27	20851FIL
		-			-							

For rodless pneumatic cylinder OSP-P overview see page 9-13

Linear Drive Accessories ø 25-50 mm **Duplex Connection**

For connection of cylinders of the Series OSP-P


The duplex connection combines two OSP-P cylinders of the same size into a compact unit with high performance.

Dimensior	Dimension Table [mm]											
For series	С	J	LA	LB	LC	LD	LE	LF	LG	LH	Orde Standard	er No. Stainless
OSP-P25	41	117	52	86	10	41	M5	100	70	85	20153FIL	20194FIL
OSP-P32	52	152	64	101	12	50	M6	130	80	100	20290FIL	20291FIL
OSP-P40	69	152	74	111	12	56	M6	130	90	110	20156FIL	20276FIL
OSP-P50	87	200	88	125	12	61	M6	180	100	124	20292FIL	20293FIL

Features

• increased load and torque capacity • higher driving forces

- Included in delivery: 2 clamping profiles with screws
- 1 mounting plate with fixings

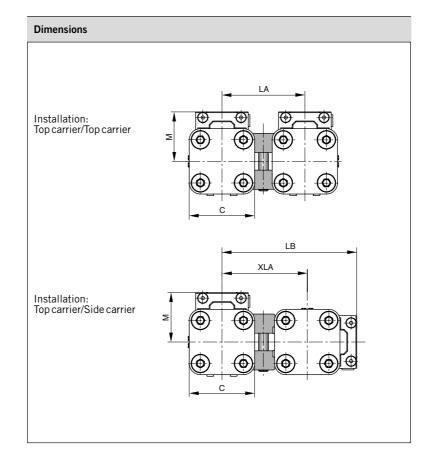
The right to introduce technical modifications is reserved

Order instructions in combination with basic cylinder see page 24, pos. 20

For rodless cylinders OSP-P overview see page 9-13

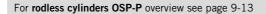
Linear Drive Accessories

ø 25-50 mm **Multiplex Connection**


For connection of cylinders of the Series OSP-P

The multiplex connection combines two or more OSP-P cylinders of the same size into on unit.


Features


• The orientation of the carriers can be freely selected

Included in delivery: 2 clamping profiles with clamping screws

Dimension	Dimension Table [mm]										
For series	С	м	LA	LB	XLA	Order Standard	No. Stainless				
OSP-P25	41	31	52	84.5	53.5	20035FIL	20193FIL				
OSP-P32	52	38	64	104.5	66.5	20167FIL	20265FIL				
OSP-P40	69	44	74	121.5	77.5	20036FIL	20275FIL				
OSP-P50	87	49	88	142.5	93.5	20168FIL	20283FIL				

Characteristics		Series P8S-GR P8S-GE	Series P8S-GP	
Characteristics	Unit	Description		
Electrical Characteristics				
Switching output / -function		Reed/NO Reed/NC	PNP/NO	
Electrical configuration		2-wire	3-wire	
Display LED yellow		yes (not	Reed NC)	
Operating voltage Ub	V	10-30 AC/DC	10-30 DC	
Voltage drop	V	≤3.5(NO) ≤0.1(NC)	≤2.2	
Power consumption @ Ub = 24 V switched on, without load	mA	-	≤10	
Permanent current	mA	≤100 (NO) ≤500 (NC)	≤100	
Max. switching capacity	W	≤10	≤6	
Switching frequency	Hz	≤400	≤1,000	
Hysteresis	mT	≥ 0.2	typ. 0.7	
EMC following EN 60947-5-2		yes	yes	
Short-circuit protection		-	yes	
Reverse polarity protection		yes	yes	
Power-up pulse protection		-	yes	
ATEX - Certification		-	on request	
Mechanical Characteristics				
Housing		P	466	
Cabletype		PUR	/black	
Cable cross section	mm ²	2x0.14	3x0.14	
Bending radius fixed	mm	2	:30	
Bending radius moving	mm	2	45	
Ambient				
Protection class to EN 60529	IP		67	
Ambient temperature range 1)	°C	-25	to + 75	
Vibration to EN 60068-2-6	G	10 to 55	5 Hz, 1 mm	
Shock to EN 60068-2-27	G	30,	11 ms	

Linear Drive Accessories Ø 10 – 80 mm Magnetic Switches P8S-G

Typ RST EST

The next generation of T-slot switches is appealing due to its ease of attachment without the use of special tools. Due to the new electronics, the hysteresis is especially narrow, allowing for a highly accurate switching point.

Magnetic switches are used for electrical sensing of the position of the piston, e.g. at its end positions. They can also be used for sensing of intermediate positions.

Sensing is contactless, based on magnets which are built-in as standard. A yellow LED indicates operating status.

The magnetic switches are attached with an adapter directly in the dovetail groove of the OSP cylinder.

With the Basic Guide BG, the magnetic switches are mounted directly in the T-slot.

The possible operating speed of the load carrier or carrier bolt must account for the minimum response time of downstream devices. Accordingly, the switching distance is included in the calculation.

Switching distance

Overrun speed

¹⁾ for the magnetic switch temperature range, please take into account the surface temperature and the self-heating properties of the linear drive.

Minimum response time

The right to introduce technical modifications is reserved

For linear drives see overview see page 9-13

Type RST

In the type RST contact is made by a mechanical **reed switch** encapsulated in glass.

Type EST

In the type EST contact is made by an **electronic switch** – without bounce or wear and protected from pole reversal. The output is short circuit proof and insensitive to shocks and vibrations.

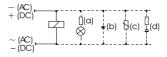
A cable with connector and open end can be ordered separately.

Magnetic Switches RST and EST

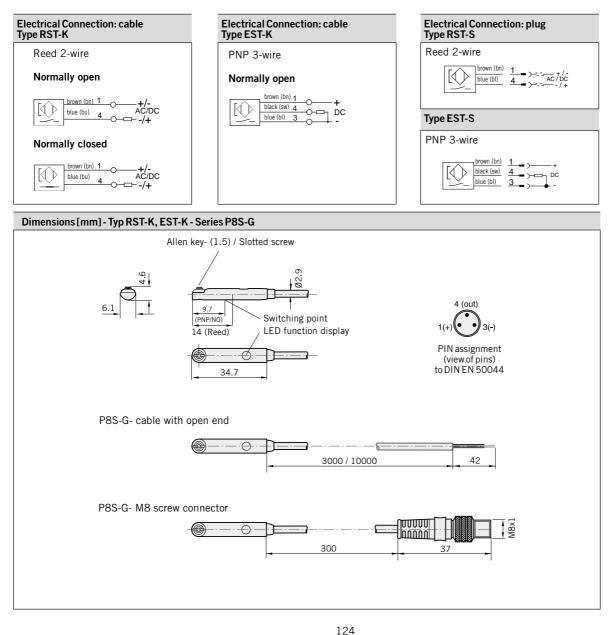
Electrical Service Life, Protective Measures

Magnetic switches are sensitive to excessive currents and inductions. With high switching frequencies and inductive loads such as relays, solenoid valves or lifting magnets, service life will be greatly reduced.

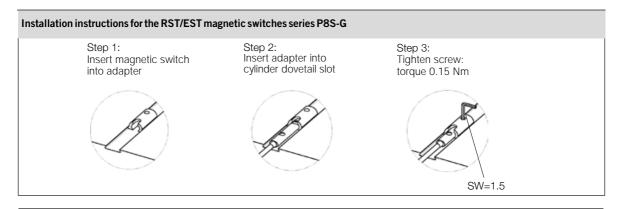
With resistive and capacitative loads

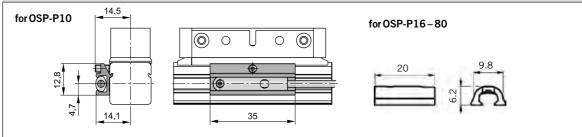

with high switch-on current, such as light bulbs, a protective resistor should be fitted. This also applies to long cable lengths.

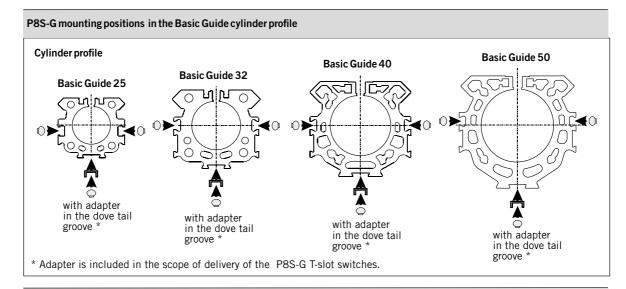
In the switching of inductive loads such as relays, solenoid valves and

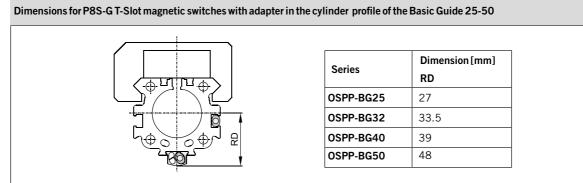

lifting magnets, voltage peaks (transients) are generated which must be suppressed by protective diodes, RC loops or varistors.

Connection Examples


Load with protective circuits (a) Protective resistor for light bulb (b) Freewheel diode on inductivity (c) Varistor on inductivity (d) RC element on inductivity

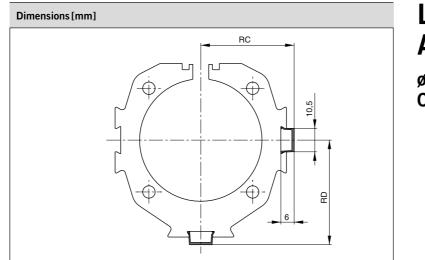

For the type EST, external protective circuits are not normally needed.





Note for OSP-P10: Switches can not be mounted directly opposite of the carrier !

The right to introduce technical modifications is reserved


Order Instructions			
Version	Voltage	Туре	Order No.
Magnetic switch, reed contact, normally open, LED indicator, cable 3 m	10-30 V AC / DC	RST-K	P8S-GRFAX
Magnetic switch, reed contact, normally open, LED indicator, cable 10 m	10-30 V AC / DC	RST-K	P8S-GRFDX
Magnetic switch, reed contact, normally open, screw connector M8, LED indicator, cable 0.3 m	10-30 V AC / DC	RST-S	P8S-GRCHX
Magnetic switch, reed contact, normally closed, cable 10 m	10-30 V AC / DC	RST-K	P8S-GEFRX
Magnetic switch, electronic, PNP LED indicator, cable 3 m	10-30 V DC	EST-K	P8S-GPFAX
Magnetic switch, electronic, PNP LED indicator, cable 10 m	10-30 V DC	EST-K	P8S-GPFDX
Magnetic switch, electronic, PNP screw connector M8, LED indicator, cable 0.3 m	10-30 V DC	EST-S	P8S-GPCHX

Included in delivery:1 magnetic switch, 1 adapter for T-slot magnetic switch for type OSP-P16 up to OSP-P80.Note:When using T-nut magnetic switches with the OSP-P10,
please order the adapter Order No. 8872FIL separately.

Accessories		
Version	Туре	Order No.
Cable M8, 2.5 m without lock nut	KS 25	KY 3240
Cable M8, 5.0 m without lock nut	KS 50	KY 3241
Cable M8, 10.0 m without lock nut	KS 100	KC 3140
Cable M8, 2.5 m with lock nut	KSG 25	KC 3102
Cable M8, 5.0 m with lock nut	KSG 50	KC 3104
Adapter for RST/EST magnetic switch – for type OSP-P10	HMTP010	8872FIL
Adapter for RST/EST magnetic switch – for type OSP-P16 up to OSP-P80		KL 9510

Magnetic switches ATEX version on request

Linear Drive Accessories

ø 16-80 mm Cable Cover

Dimension Tab	Dimension Table [mm] and Order Instructions									
Series	Din RC	nensions [mm] RD	Order No.							
OSP-P16	18.5	19	13039FIL							
OSP-P25	23.5	25.5								
OSP-P32	29.5	32	Minimal length: 1 m Max. profile length: 2 m							
OSP-P40	34.5	37.5	Multiple profiles can be							
OSP-P50	41.5	46.5	used.							
OSP-P63	51.5	57.5								
OSP-P80	64.5	70.5								

For clean guidance of magnetic switch cables along the cylinder body. Contains a maximum of 3 cables with diameter 3 mm. Material: Plastic Temperature Range: -10 to +80 °C

The right to introduce technical modifications is reserved

ORIGA-SENSOFLEX Displacement Measuring System for Cylinder Series OSP-P

Contents

Description	Page
Overview	130
Technical Data SFI-plus	131-132
Dimensions SFI-plus	132-133
Order Instructions SFI-plus	133

ORIGA-Sensoflex

Displacement measuring system for automated movement

Series SFI-plus (incremental measuring system)

for cylinder series • OSP-P..

Characteristics

- Contactless magnetic
- displacement measurement system
- Displacement length up to 32 m
- Resolution 0.1 mm (option: 1 mm)
- Displacement speed up to 10 m/s • For linear and non-linear rotary motion
- Suitable for almost any control or display unit with a counter input

For further specifications, see page 132.

The SFI-plus magnetic displacement measuring system consists of 2 main components.

• Measuring Scale Self-adhesive magnetic measuring scale.

• Sensing Head Converts the magnetic poles into electrical signals which are then processed by counter inputs downstream (e.g. PLC, PC, digital counter)

Characteristics			
Characteristics	Unit	Description	
Туре		21210FIL	21211FIL
Output Function			
Resolution	mm	0.1	1
Pole lengths magnetic scale	mm	5	
Maximum speed	m/s	10	
Repeat accuracy		±1 Increment	
Distance between sensor and scale	mm	<2	
Tangential deviation		≤3°/≤1°	
Lateral deviation	mm	≤±1.5	
Switchingoutput		push/pull	
Electrical characteristics		•	
Operating voltage U_b	V DC	10-30	
Voltage drop	V	≤2	
Continuous current for each output	mA	≤40	
Power consumption at $U_b = 24V$, switched on, without load	mA	≤15	
Short-circuit protection		yes	
Reverse polarity protection		yes	
Protection from inductive load		yes	
EMC			
Emission standard for industrial		DIN EN 61000-6	-4
Immunity for industrial environments		DIN EN 61000-6	-2
Mechanical Characteristics			
Housing material		Aluminium	
Cable length	m	5.0-casted, flyir	nglead
Cable cross section	mm ²	2x0.14+2x0.2	2
Cabletype		PUR, black	
Bending radius, moving	mm	≥50	
Weight (mass)	kg	appr. 0.165	
Environmental Conditions / Shock Resis	stance		
Degree of protection	IP	67 to EN60529	
Ambient temperature range	°C	-25 to +85	
Vibration stress to EN 60068-2-6	m/s²	300, 55 Hz2 kl	Ηz
Shock to EN 60068-2-27	m/s ²	300, 11 ms	

Displacement measuring system

for automated movement

ORIGA-Sensoflex (incremental displacement

measuring system)

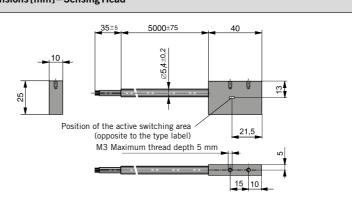
Series SFI-plus

for cylinder series

• OSP-P..

Note:

For combinations Active Brake AB + SFI-plus + Magnetic Switch contact our technical department please.


Sensing Head

The sensing head provides two pulsating, 90° out of phase counter signals (phase A/B) with a 0.1 mm resolution (option 1 mm). The counting direction can be deter-

mined automatically from the phase variance of the counter signals.

Electrical Connection	Electrical Connection							
Colour	Function							
red (RD)	1030VDC							
black(BK)	ground							
yellow (YE)	signal A							
green (GN)	signal B							
shield	shielding							

Dimensions [mm] – Sensing Head

Output signal – Sensing Head

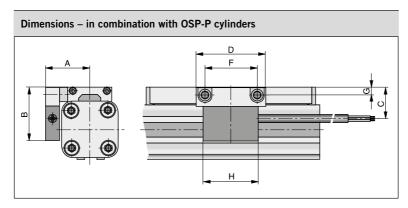
$U_a = U_e$	Phase B	U_{al}	0°	
a t	Phase A	$U_{_{a2}}$	90°	

SFI-plus mounted on a rodless cylinder series OSP-P

The SFI-plus system can be mounted directly on a rodless OSP-P cylinder with the special mounting kit. The position of the sensing head is generally 90° to the carrier.

Note: Impulse Freqency:

Pole distance of the magnetic measurement scale is 5 mm.


Impulse generation depends on the SFI-plus type used. The proportional output frequency of the signal impulses increases as the travel speed goes up. The cycle freqency of the downstream counter input must be set accordingly.

Displacement measuring system	Resolution [mm]	Velocity [m/sec]	Output freqency [kHz]
SFI-plus 21210FIL	0.1	1	10
SFI-plus 21211FIL	1	1	1

Combinations consisting of SFI-plus and OSP-P Cylinders with guides are available on request.

Dimension	Table [mm]					
Serie A		В	С	D	F	G	Н
OSP-P25	31	43	23	50	38	5.5	40
OSP-P32	37	50	30	50	38	6.5	40
OSP-P40	42	54	34	50	38	6.5	40
OSP-P50	49	59	39	50	38	6.5	40
OSP-P63	59	73	49	50	38	10	40
OSP-P80	72	90	64	50	38	12	40

Order instructions	
Description	
Sensing head with measuring scale – Resolution 0.1 mm (please order overall length *)	21240-measurement scale [mm], 5 digits
Option: Sensing head with measuring scale – Resolution 1 mm (please order overall length *)	21241-measurement scale [mm], 5 digits
Sensing head – Resolution 0.1 mm (spare part)	21210FIL
Option: Sensing head – Resolution 1 mm (spare part)	21211FIL
Measuring scale per meter (spare part)	21235FIL
Mounting kit for OSP-P25	21213FIL
Mounting kit for OSP-P32	21214FIL
Mounting kit for OSP-P40	21215FIL
Mounting kit for OSP-P50	21216FIL
Mounting kit for OSP-P63	21217FIL
Mounting kit for OSP-P80	21218FIL

* Overall length of the measuring scale results from stroke length of the cylinder + dead length Dead length for linear drives series OSP-P see table.

Note:

Order instructions in combination with basic cylinder see page 24, pos. 25

Series	Dead length [mm]
0SP-P 25	154
0SP-P 32	196
0SP-P 40	240
0SP-P 50	280
0SP-P 63	350
0SP-P 80	422

2		= overall length of the measuring scale = 01154 mm
Example: Cylinder OSP	-P, Ø25 mm, stro	ke length 1000 mm

Please use this order pattern: 21240-01154

-4	5+6		7	7 8				9	Γ	10	11		12-16		
SPP	25		C			0		0	0		0		01100		
511				,				0				0		51100	
Piston-Ø V		ı ———			_		_				_				
		Vers	sion/Pisto	on	Air	Connection	Se	als		Lubrication	S	crews	Stro	oke	
	10	0	standard		0	standard	0	standard (NBR)) 0 standard	0	standard	Input			
	16	1	Tandem		1	on the end face	1	Viton ® 1)		1 slow speed ^{2) 3)}	1	stainless	in mm (5 digits)		
	25		Clean room cylinder		2	both at one end (end caps are not									
	32			turnable)											
	40		Standard ⁴⁾		3	left standard right end face									
	50		Classic		4	right standard									
	63		Classic Tand	em	7	left end face Clean room									
	80														
	<u> </u>]			A	3/2 way valve VOE 24 V =									
						Ø25,32,40,50									
					в	3/2 way valve VOE 230V~/110 V=									
						Ø25,32,40,50									
					С	3/2 way valve VOE 48 V=									
						Ø25,32,40,50									
					E	3/2 way valve VOE 110 V~									
						Ø 25, 32, 40, 50									

¹⁾ Viton with VOE not possible.

 $^{\scriptscriptstyle 2)}$ "Slow speed lubrication" in combination with "Viton®" seals on demand.

 $^{\scriptscriptstyle 3)}$ "Lubrication slow speed" in combination with "max. cushioning length" not possible.

 $^{\scriptscriptstyle 4)}$ Combination ATEX with VOE not possible.

	17		18	19		20		21		22	23	24	25
	0		0	0		0		0		0	0	0	0
En	d cap position	Cı	Ishioning	Piston Mounting						Cover / Cable Chan	nel		Measuring system
0	L+R $0^\circ = in front$	0	standard	0 without	0	without	0	without		0 standard	_		0 without
1	L+R 90° = underneath	1	max. length 3)	1 Clevis mounting	2	Slideline SLXX	2			1 Cable char	nel		X SFI 0.1 m
2	L+R 180°= at the back	2	variable stop complete		3	Slideline with Activebrake	3	Guide Carriage		2 Cable char two-sided	nel		Y SFI 1mm
3	L+R 270° = same side as outerband		VS soft left only for Starline.		4	SL-ABXX		Activebrake		X without			
4	L 90° = underneath; R 0° = in front		KF and Heavy Duty guide		4	Passivebrake Multibrake	4	Guide Carriage		overtail			
5	L $180^\circ = $ at the back; R $0^\circ = $ in front	3	variable stop complete		6	SL-MBXX Proline PLXX		Passivebrake	мв				
6	L 270° = same side as outerband;		VS hard left only for Starline,		7	Proline with Activebrake	6	Guide Carriage Proline PLXX					
7	R $0^\circ = in \text{ front}$ L $0^\circ = in \text{ front};$		Duty guide			PL-ABXX	7	Guide Carriage Proline					
8	R 90° = underneath L 180° = at the back;	4	complete		0	Passivebrake Multibrake		Activebrake PL-ABXX					
9	R 90° = underneath L 270° =same side		only for Starline, KF and Heavy		A	PL-MBXX Activebrake	8	Proline with					
	as outerband; R 90° = underneath	5	Duty guide variable stop		В	ABXX Starline STLXX		Multibrake PL-MBXX					
Α	L 0°= in front; R 180° = at the back		complete VS hard right		С	KFXX	в						
В	L 90° = underneath; R 180° = at the back		only for Starline, KF and Heavy		D	Heavy Duty HDXX		STLXX	KFXX				
С	L 270° = same side as outerband; R 180° = at the back	6	variablestop		E	PSXX/25 Powerslide	D	Guide Carriage					
D	L $0^\circ = in \text{ front};$ R 270° = same side		0 0 0 0 0 0 0 Cushioning 0 standard 0 standard 1 max. length ²⁾ 1 Clevis mounting 2 variable stop complete VS soft left only for Starline, KF and Heavy Duty guide I 3 Variable stop complete VS soft left only for Starline, KF and Heavy Duty guide 4 Variable stop complete VS soft right only for Starline, KF and Heavy Duty guide 5 variable stop complete VS soft right only for Starline, KF and Heavy Duty guide 5 variable stop complete VS soft right only for Starline, KF and Heavy Duty guide 5 variable stop complete VS soft right only for Starline, KF and Heavy Duty guide 5 variable stop complete VS soft right only for Starline, KF and Heavy Duty guide 5 variable stop complete VS soft right only for Starline, KF and Heavy Duty guide 6 B 7 Proline with Passivebrake Mutibrake 8 Guide Carriage Proline with Passivebrake Mutibrake 9 Guide Carriage Starline Starline 9 KFand Heavy Duty guide 9 B 9										
E	as outerband L 90° = underneath;												
	R 270° = same side as outerband	7											
F	L 180° = at the back; R 270° = same side												
	as outerband		KF and Heavy				I	-	KX/76				
			Duty guide			<u> </u>	м	Slideline with Passivebrake Multibrake SL-MBXX witho	out				
technical	ved						N	Proline with Passivebrake Multibrake PL-MBXX without brake					

The right to introduce technica modifications is reserved

Parker Worldwide

Europe, Middle East, Africa

AE – United Arab Emirates, Dubai Tel: +971 4 8127100 parker.me@parker.com

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BY – Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CH – Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES – Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI – Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HU – Hungary, Budapest Tel: +36 23 885 470 parker.hungary@parker.com

© 2020 Parker Hannifin Corporation. All rights reserved.

IE – Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ – Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU – Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA – Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com **North America**

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

US – USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN – China, Shanghai Tel: +86 21 2899 5000

HK – Hong Kong Tel: +852 2428 8008

IN – India, Mumbai Tel: +91 22 6513 7081-85

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR – South Korea, Seoul Tel: +82 2 559 0400

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

SG – Singapore Tel: +65 6887 6300

TH – Thailand, Bangkok Tel: +662 186 7000-99

TW – Taiwan, Taipei Tel: +886 2 2298 8987

South America

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

BR – Brazil, Sao Jose dos Campos Tel: +55 800 727 5374

CL – Chile, Santiago Tel: +56 2 623 1216

MX – Mexico, Apodaca Tel: +52 81 8156 6000

Parker Hannifin GmbH Pat-Parker-Platz 1 41564 Kaarst (Germany)

Tel.: + 49 (0)2131 4016-0 Fax: + 49 (0)2131 4016-9199 Internet: www.parker.com E-Mail: parker.germany@parker.com

