

Pneumatic cylinders

Series P1J Compact cylinders

Catalogue PDE2561TCUK-ul December 2006

Features	Air cylinder	Hydraulic cylinder	Electro mechanical actuators
Overload safe	***	***	*
Easy to limit force	***	***	*
Easy to vary speed	***	***	*
Speed	***	**	**
Reliability	***	***	***
Robustness	***	***	*
Installation cost	***	*	**
Ease of service	***	**	*
Safety in damp environments	***	***	*
Safety in explosive atmospheres	***	***	*
Safety risk with electrical installations	***	***	*
Risk of oil leak	***	*	***
Clean, hygienic	***	**	*
Standardised measurements	***	***	*
Service life	***	***	*
Hydraulic system required	***	*	***
Weight	***	**	**
Purchase price	***	**	*
Power density	**	***	*
Noise level during operation	**	***	**
High force for size	**	***	*
Positioning possibilities	*	***	***
Total energy consumption	*	**	***
Service interval	*	**	***
Compressor capacity required	*	***	***

* = good, **=average, ***=excellent

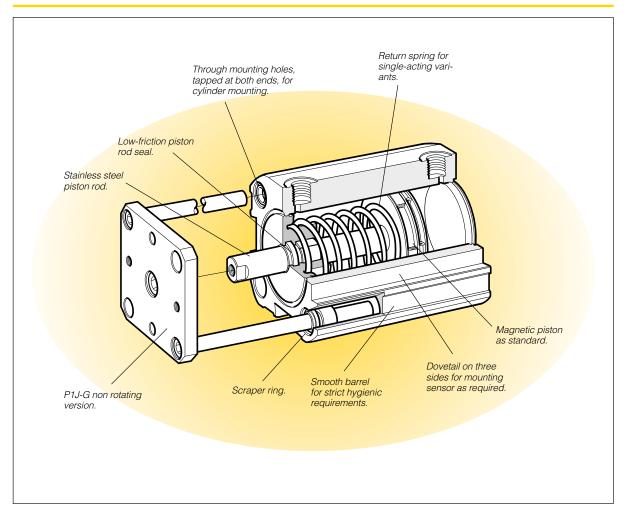
Important

Before attempting any external or internal work on the cylinder or any connected components, make sure the cylinder is vented and disconnect the air supply in order to ensure isolation of the air supply.

Note

All technical data in this catalogue are typical data only.

Air quality is essential for maximum cylinder service life (see ISO 8573).


2

Pneumatic Division - Europe

Contents Page Cylinder series P1J, general......4-5 Main data.....7 Working medium, air quality7 Material specification7 Side load force diagram7 Guide for selecting suitable tubing8 Dimensions (mm)10 Order key.....11 Standard stroke length11 Order codes double acting12 Order codes single acting......13 Order codes double acting, guided......15 Mountings......17-18

Single acting and double acting versions

The P1J range of cylinders is intended for use in a wide range of applications. These cylinders are particularly suitable in applications such as packaging, the food industry and the textile industry.

Careful design and high quality throughout ensure long, trouble free service life.

The compact design, with through mounting holes that are countersunk and tapped at both ends, make the cylinders easy to mount, with or without mountings.

They are available in diameters of 12, 20, 25, 32, 40, 50 and 63 mm, with stroke lengths up to 100 mm.

The single acting version is available in the same bore size as the double acting version and with stroke lengths up to 50 mm. All cylinder types have magnetic pistons as standard, and are initially lubricated with our foodgrade grease. Reed switch and solid state sensors are available as accessories, and can be fitted in the dovetail slots on three of the sides of the cylinder body.

External guide device

The cylinder can be supplied with an external guide unit to prevent the piston from turning. It guides the piston rod and enables the cylinder to resist turning moments on the piston rod and/or transverse forces. The device consists of a substantial mounting plate and two guides that run along the sides of the cylinder in two bearingsupport guide sleeves. The plate has pre-drilled mounting holes to aid assembly.

Options

In addition to a large selection of standard cylinders, the P1J is available in several standard variants, such as custom stroke length, extended piston rods, double piston rods etc.

Additionally, a complete range of sensor and mounting devices is available.

Parker Hannifin Corporation Pneumatic Division - Europe

Smooth external design

There are no recesses or pockets in the end covers that could trap dirt or liquid, making cleaning simple and effective.

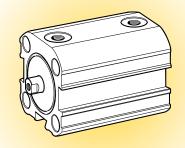
Corrosion resistant

Even the basic versions of the cylinders have good corrosion resistance through appropriate choice of materials and surface treatment, allowing them to be used in demanding environments.

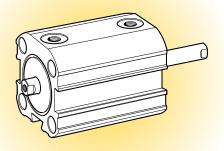
As the end face of the cylinders is not fully anodised in the standard version, extra anodising can be specified when ordering to provide extra corrosion protection.

Piston sensing

A complete range of sensors for piston sensing is available as accessories: both reed switch and solid state sensors are available. They are supplied with either a flying lead or with a cable plug connector, with a moulded cable.

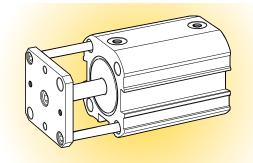

Mounting

A range of mountings with appropriate surface finish is available as accessories.


Variants

In addition to the basic versions, P1J cylinders are available in several standard variants:

Cylinders with non-standard stroke lengths Cylinders with extended piston rods Cylinders with through piston rod Cylinders with through, hollow piston rod Single-acting cylinders Cylinders with anodised end faces Cylinders with piston rod guides Double acting


Double acting, through piston rod

Single acting, spring return

Double acting, guided piston rod

Cylinder forces, double acting variants

Cyl. bore/	Stro	ke Piston	area		M	ax theoret	ical force i	n N (bar)					
pist. rod mm		cm ²	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0	9,0	10,0	
12/6	+ -	1,1 0,8	11 8	23 17	34 25	45 34	57 42	68 51	79 59	90 68	102 76	113 85	
20/10	+ -	3,1 2,3	31 23	63 46	94 69	126 92	157 115	188 138	220 161	251 184	283 207	314 231	
25/10	+ -	4,9 4,1	49 41	98 82	147 124	196 165	245 206	295 247	344 289	393 330	442 371	491 412	
32/12	+ -	8,0 6,9	80 69	161 138	241 207	322 276	402 346	483 415	563 484	643 553	724 622	804 691	
40/12	+ -	12,6 11,4	126 114	251 229	377 343	503 457	628 572	754 686	880 800	1005 915	1131 1029	1257 1144	
50/16	+ -	19,6 17,6	196 176	393 352	589 529	785 705	982 881	1178 1057	1374 1234	1571 1410	1767 1586	1963 1762	
63/16	+ -	31,2 29,2	312 292	623 583	935 875	1247 1166	1559 1548	1870 1750	2182 2041	2494 2333	2806 2625	3117 2916	

+ = Outward stroke

_ = Return stroke Note!

Select a theoretical force 50-100%

larger than the force required

Cylinder forces single acting variants Indicated cylinder forces are theoretical and should be reduced

according to the working conditions.

Order code	Theoretic at 6 bar	cal piston f	orce		Order code	Theoretical piston force at 6 bar				
	+ stroke		Spring re	etraction		+ stroke		Spring re	etraction	
	Nmax	Nmin	Nmax	Nmin		Nmax	Nmin	Nmax	Nmin	
Single acting,					Single acting,					
P1J-S012SS-0005	59	58	9	8	P1J-S040SS-0005	704	701	53	50	
P1J-S012SS-0010	60	58	9	7	P1J-S040SS-0010	706	701	53	48	
P1J-S012SS-0015	61	58	9	6	P1J-S040SS-0015	709	701	53	45	
					P1J-S040SS-0020	712	701	53	42	
P1J-S020SS-0005	159	156	32	29	P1J-S040SS-0025	715	701	53	39	
P1J-S020SS-0010	161	156	32	27	P1J-S040SS-0030	718	701	53	36	
P1J-S020SS-0015	164	156	32	24	P1J-S040SS-0040	712	701	53	42	
P1J-S020SS-0020	166	156	32	22	P1J-S040SS-0050	715	701	53	39	
P1J-S020SS-0025	169	156	32	19						
P1J-S020SS-0030	172	156	32	16	P1J-S050SS-0005	1088	1079	99	90	
					P1J-S050SS-0010	1096	1079	99	82	
P1J-S025SS-0005	265	262	32	29	P1J-S050SS-0015	1105	1079	99	73	
P1J-S025SS-0010	267	262	32	27	P1J-S050SS-0020	1114	1079	99	64	
P1J-S025SS-0015	270	262	32	24	P1J-S050SS-0025	1123	1079	99	55	
P1J-S025SS-0020	272	262	32	22	P1J-S050SS-0030	1131	1079	99	47	
P1J-S025SS-0025	275	262	32	19	P1J-S050SS-0040	1114	1079	99	64	
P1J-S025SS-0030	278	262	32	16	P1J-S050SS-0050	1123	1079	99	55	
P1J-S025SS-0040	272	262	32	22						
P1J-S025SS-0050	275	262	32	19	P1J-S063SS-0005	1774	1767	103	96	
					P1J-S063SS-0010	1780	1767	103	90	
P1J-S032SS-0005	439	436	46	43	P1J-S063SS-0015	1786	1767	103	84	
P1J-S032SS-0010	442	436	46	40	P1J-S063SS-0020	1793	1767	103	77	
P1J-S032SS-0015	445	436	46	37	P1J-S063SS-0025	1799	1767	103	71	
P1J-S032SS-0020	447	436	46	35	P1J-S063SS-0030	1806	1767	103	64	
P1J-S032SS-0025	450	436	46	32	P1J-S063SS-0040	1793	1767	103	77	
P1J-S032SS-0030	453	436	46	29	P1J-S063SS-0050	1799	1767	103	71	
P1J-S032SS-0040	447	436	46	35						
P1J-S032SS-0050	450	436	46	32						

Parker

Cylinder	Cylinc	ler	Piston	rod		Basic we	ight	Guided v	veight	Air	Port
designation	Bore	Area cm²	Diam.	Area	Thread (female)	at 0 mm stroke	addition per 10 mm stroke	at 0 mm stroke	addition per 10 mm stroke	con- sump- tion	thread
	mm	CITE	mm	CITI		kg	kg	kg	kg	Litre	
Double acting											
P1J-S 012 DS	12	1,13	6	0,28	M3	0,06	0,016	-	-	0,0139 ¹⁾	M5
P1J-S 020 DS	20	3,14	10	0,78	M5	0,13	0,030	0,17	0,033	0,0385 ¹⁾	M5
P1J-S 025 DS	25	4,91	10	0,78	M5	0,15	0,035	0,21	0,038	0,0633 1)	M5
P1J-S 032 DS	32	8,04	12	1,13	M6	0,20	0,044	0,27	0,050	0,1050 ¹⁾	G1/8
P1J-S 040 DS	40	12,6	12	1,13	M6	0,29	0,054	0,40	0,058	0,1680 ¹⁾	G1/8
P1J-S 050 DS	50	19,6	16	2,01	M8	0,50	0,070	0,65	0,080	0,2610 ¹⁾	G1/8
P1J-S 063 DS	63	31,2	16	2,01	M8	0,77	0,100	1,08	0,110	0,4220 1)	G1/8
Single acting											
P1J-S 012 SS	12	1,13	6	0,28	M3	0,06	0,016	-	-	0,0079 ¹⁾	M5
P1J-S 020 SS	20	3,14	10	0,78	M5	0,13	0,030	0,17	0,033	0,0220 1)	M5
P1J-S 025 SS	25	4,91	10	0,78	M5	0,16	0,035	0,22	0,038	0,0344 1)	M5
P1J-S 032 SS	32	8,04	12	1,13	M6	0,21	0,044	0,28	0,050	0,0563 1)	G1/8
P1J-S 040 SS	40	12,6	12	1,13	M6	0,30	0,054	0,41	0,058	0,0882 1)	G1/8
P1J-S 050 SS	50	19,6	16	2,01	M8	0,52	0,070	0,67	0,080	0,1372 ¹⁾	G1/8
P1J-S 063 SS	63	31,2	16	2,01	M8	0,80	0,100	1,11	0,110	0.2184 1)	G1/8

1) Free air consumption per 10 mm stroke length for a double stroke at a pressure of 600 kPa (6 bar)

Working medium, air quality

Working medium Dry, filtered compressed air to ISO 8573-1 class 3.4.3.

Recommended air quality for cylinders

For best possible service life and trouble-free operation, ISO 8573-1 quality class 3.4.3 should be used. This means 5 µm filter (standard filter) dew point +3 °C for indoor operation (a lower dew point should be selected for outdoor operation) and oil concentration 1.0 mg oil/m³, which is what a standard compressor with a standard filter gives.

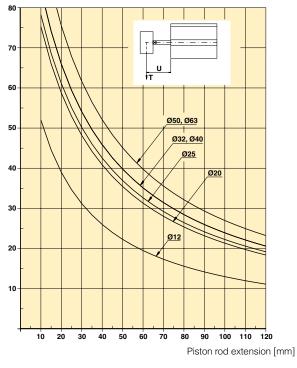
ISO 8573-1 quality classes

Quality class	Pollur particle size (µm)	size centration (μm) (mg/m ³)		Oil max con- centration (mg/m ³)
1	0,1	0,1	-70	0,01
2	1	1	-40	0,1
3	5	5	-20	1,0
4	15	8	+3	5,0
5	40	10	+7	25
6	-	-	+10	-

Material specification Double and single-acting

Piston rod	Stainless steel, DIN X10 CrNiS 18 9
Piston rod seal	Nitrile rubber, NBR
Piston rod bearing, Ø20-Ø63 mm	Multi-layer PTFE/bronze/steel
Piston bearing, Ø20-Ø63 mm	UHMWPE plastic
A-cover, Ø12 mm	Brass
End cover	Aluminium
Locking ring, Ø12 mm	Surface-finished steel
O-ring, cover, Ø12 mm	Nitrile rubber, NBR
Barrel	Anodised aluminium
Piston, Ø12 mm	Brass
Piston, Ø20-Ø63 mm	Aluminium
Piston seal	Nitrile rubber, NBR
Return spring, Ø12 mm	Stainless steel
Return spring, Ø20-Ø63 mm	Surface-treated steel

Other data Working pressure


Working temperature

Max. 10 bar Max +80 °C Min -20 °C

Prelubricated, further lubrication is not normally necessary. If additional lubrication is introduced it must be continued.

Side load force diagram

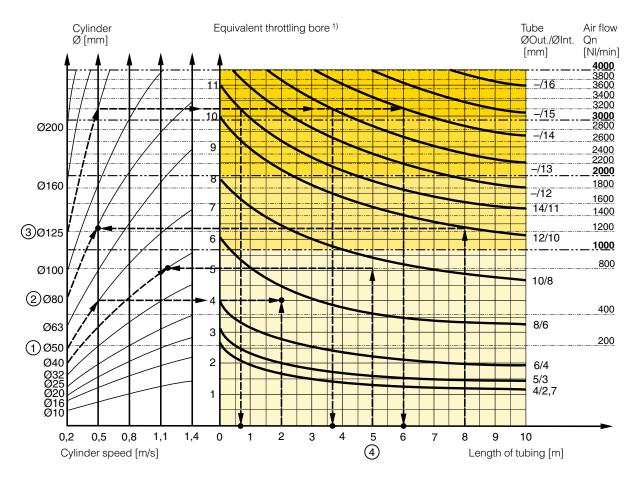
Permissible side loading as a function of piston rod extension. Side load $\left[N\right]$

Parker Hannifin Corporation Pneumatic Division - Europe

Guide for selecting suitable tubing

The selection of the correct size of tubing is often based on experience, with no great thought to optimizing energy efficiency and cylinder velocity. This is usually acceptable, but making a rough calculation can result in worthwhile economic gains.

The following is the basic principle:


- 1. The primary line to the working valve could be over sized (this does not cause any extra air consumption and consequently does not create any extra costs in operation).
- 2. The tubes between the valve and the cylinder should, however, be optimized according to the principle that an insufficient bore throttles the flow and thus limits the cylinder speed, while an oversized pipe creates a dead volume which increases the air consumption and filling time.

The chart below is intended to help when selecting the correct size of tube to use between the valve and the cylinder.

The following prerequisites apply:

The cylinder load should be about 50% of the theoretical force (= normal load). A lower load gives a higher velocity and vice versa. The tube size is selected as a function of the cylinder bore, the desired cylinder velocity and the tube length between the valve and the cylinder.

If you want to use the capacity of the valve to its maximum, and obtain maximum speed, the tubing should be chosen so that they at least correspond with the equivalent restriction diameter (see description below), so that the tubing does not restrict the total flow. This means that a short tubing must have at least the equivalent restriction diameter. If the tubing is longer, choose it from the table below. Straight fittings should be chosen for highest flow rates. (Elbow and banjo fittings cause restriction.)

- 1) The "equivalent throttling bore" is a long throttle (for example a tube) or a series of throttles (for example, through a valve) converted to a short throttle which gives a corresponding flow rate. This should not be confused with the "orifice" which is sometimes specified for valves. The value for the orifice does not normally take account of the fact that the valve contains a number of throttles.
- 2) Qn is a measure of the valve flow capacity, with flow measured in litre per minute (I/min) at 6 bar(e) supply pressure and 1 bar pressure drop across the valve.

8

Example (1): Which tube diameter should be used?

A 50 mm bore cylinder is to be operated at 0.5 m/s. The tube length between the valve and cylinder is 2 m. In the diagram we follow the line from 50 mm bore to 0.5 m/s and get an "equivalent throttling bore" of approximately 4 mm. We continue out to the right in the chart and intersect the line for a 2 m tube between the curves for 4 mm (6/4 tube) and 6 mm(8/6 tube). This means that a 6/4 tube throttles the velocity somewhat, while an 8/6 tube is a little too large. We select the 8/6 tube to obtain full cylinder velocity.

Example (2): What cylinder velocity will be obtained?

A 80 mm bore cylinder will be used, connected by 8 m 12/10 tube to a P2L-B valve. What cylinder velocity will we get? We refer to the diagram and follow the line from 8 mm tube length up to the curve for 12/10 tube. From there, we go horizontally to the curve for the Ø80 cylinder. We find that the velocity will be about 0.5 m/s.

Example ③: What is the minimum inner diameter and maximum lenght of tube?

For a application a 125 mm bore cylinder will be used. Maximum velocity of piston rod is 0.5 m/s. The cylinder will be controlled by a P2L-D valve. What diameter of tube can be used and what is maximum lenght of tube.

We refer to the diagram. We start at the left side of the diagram cylinder \emptyset 125. We follow the line until the intersection with the velocity line of 0.5 m/s. From here we draw a horizontal line in the diagram. This line shows us we need an equivalent throt-tling bore of approximately 10 mm. Following this line horizon-tally we cross a few intersections. These intersections shows us the minimum inner diameter (rightside diagram) in combination with the maximum length of tube (bottomside diagram).

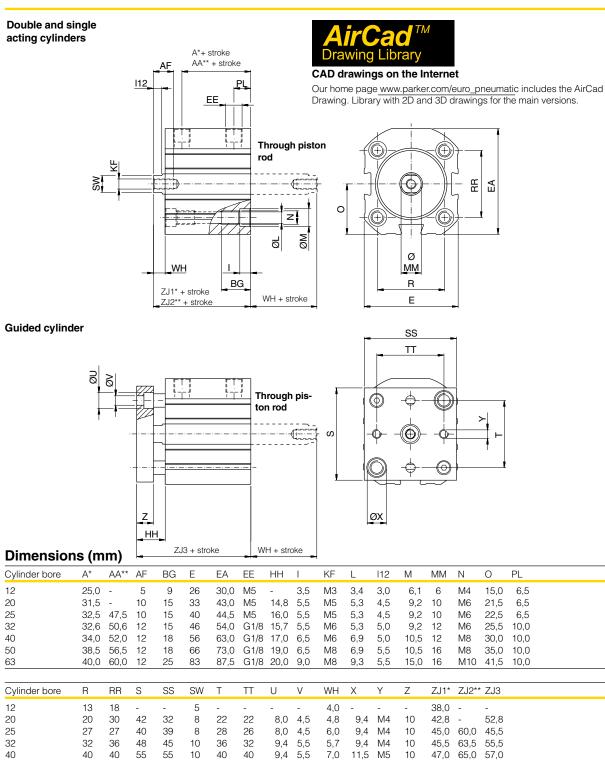
For example:

Intersection one: When a tube (14/11) will be used, the maximum length of tube is 0.7 meter. Intersection two: When a tube (—/13) will be used, the maximum length of tube is 3.7 meter. Intersection three: When a tube (—/14) will be used, the maximum length of tube is 6 meter.

Example ④: Determining tube size and cylinder velocity with a particular cylinder and valve?

For an application using a 40 mm bore cylinder with a valve with Qn=800 NI/min. The distance between the cylinder and valve has been set to 5 m.

Tube dimension: What tube bore should be selected to obtain the maximum cylinder velocity? Start at pipe length 5 m, follow the line up to the intersection with 800 NI/min. Select the next largest tube diameter, in this case Ø10/8 mm.


Cylinder velocity: What maximum cylinder velocity will be obtained? Follow the line for 800 NI/min to the left until it intersects with the line for the Ø40 mm cylinder. In this example, the speed is just above 1.1 m/s.

Valve series with respective flows in NI/minute

Valve series	Qn in NI/Min
Valvetronic Solstar	33
Interface PS1	100
Valvetronic Interface 2000	100
B2 Series	168
Adex A05	173
Moduflex size 1. (2 x 3/2)	220
Valvetronic PVL-B 5/3 closed centre, 6 mm push in	290
Moduflex size 1, (4/2)	320
B43 Manual and mechanical	340
Valvetronic PVL-B 2 x 2/3, 6 mm push in	350
Valvetronic PVL-B 5/3 closed centre, G1/8	370
Compact Isomax DX02	385
Valvetronic PVL-B 2 x 3/2 G1/8	440
Valvetronic PVL-B 5/2, 6 mm push in	450
Valvetronic PVL-B 5/3 vented centre, 6 mm push in	
Moduflex size 2, (2 x 3/2)	450
Flowstar P2V-A	520
Valvetronic PVL-B 5/3 vented centre, G1/8	540
Valvetronic PVL-B 5/2, G1/8	540
Valvetronic PVL-C 2 x 3/2, 8 mm push in	540
Adex A12	560
Valvetronic PVL-C 2 x 3/2 G1/8	570
Compact Isomax DX01	585
Valvetronic PVL-C 5/3 closed centre, 8 mm push in	
Valvetronic PVL-C 5/3 vented centre, G1/4	700
VIKING P2L-A	760
B3 Series	780
Valvetronic PVL-C 5/3 closed centre, G1/4	780
Moduflex size 2, (4/2)	800
Valvetronic PVL-C 5/2, 8 mm push in	840
Valvetronic PVL-C 5/3 vented centre, 8 mm push ir	
Valvetronic PVL-C 5/2, G1/4	840
VIKING P2L-B	1020
Flowstar P2V-B	1090
ISOMAX DX1	1150
B53 Manual and mechanical	1160
B4 Series	1170
Airline Isolator Valve VE22/23	1470
ISOMAX DX2	2330
VIKING P2L-D	2880
ISOMAX DX3	4050
Airline Isolator Valve VE42/43	5520
Airline Isolator Valve VE82/83	13680
AITING ISOIALOI VAIVE VLOZ/00	10000

13 * A and ZJ1 = Double acting cylinders and single acting cylinders up to stroke length 30 mm

13 50

62

50

62

11,5 6,5

14,5 9,0

65

80

** AA and ZJ2 = Single acting cylinders, stroke length 31 to 50 mm ±1 mm

80

Length tolerances

50

63

+1.5/0 mm Stroke length tolerances

50 50 65

62 62

10

7,0

8.0

11,5 M6

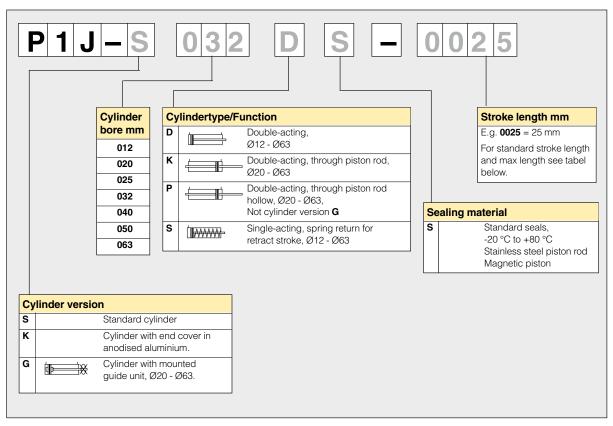
14.5

M6

12

12

53,0 71,0


77.0 69.0

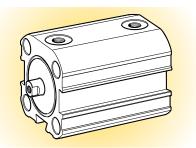
57,0

65,0

Order key

Standard stroke length

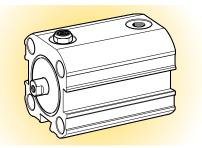
Cylinder	Cylinder		 Stan 	dard s	troke l	ength i	n mm				
designation	bore	5	10	15	20	25*	30	40	50*	80*	100*
Double acting:											
P1J-S012D	12	٠	•	•	•	•					
P1J-S020D	20	•	•	•	•	•	•	•	•		
P1J-S025D	25	•	•	•	•	•	•	•	•		
P1J-S032D	32	•	•	•	•	•	•	•	•	•	
P1J-S040D	40	•	•	•	•	•	•	•	•	•	
P1J-S050D	50	•	•	•	•	•	•	•	•	•	
P1J-S063D	63	•	•	•	•	•	•	•	•	•	•
Double acting with											
P1J-G020D	20	•	•	•	•	•	•	1	•		
P1J-G025D	25	•		1	•	•	•	1	•		
P1J-G032D	32	1		1	- T	1	- T		.	1	
P1J-G040D	40	1		1	- T	Ī	Ī	Ī	Ţ	I	
P1J-G050D	50	1		1	- T	Ī	Ţ	Ţ	Ţ	Ţ	
P1J-G063D	63	•	•	•	•	•	•	•	•	•	•
Single acting:											
P1J-S012S	12	•									
P1J-S020S	20	•	•	•	•	•	•				
P1J-S025S	25	٠	•	•	•	•	•	•	•		
P1J-S032S	32	٠	•	•	•	•	•	•	•		
P1J-S040S	40	•	•	•	•	•	•	•	•		
P1J-S050S	50	•	•	•	•	•	•	•	•		
P1J-S063S	63	•	•	•	•	•	•	•	•		
* Standard stroke le	ngth in mm acc	ording	to ISO	4393							


Parker Hannifin Corporation Pneumatic Division - Europe

Data

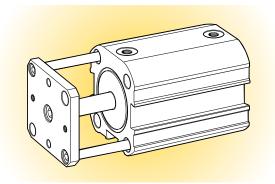
Working pressure Working temperature

Max. 10 bar Max. +80 °C Min. –20 °C


ī

Double acting	9		Double actin	g	
Cyl. bore	Stroke mm	Order code	Cyl. bore	Stroke mm	Order code
12	05	P1J-S012DS-0005	40	05	P1J-S040DS-0005
M5 thread	10	P1J-S012DS-0010	G1/8 thread	10	P1J-S040DS-0010
	15	P1J-S012DS-0015		15	P1J-S040DS-0015
	20	P1J-S012DS-0020	_	20	P1J-S040DS-0020
	25	P1J-S012DS-0025	-	25	P1J-S040DS-0025
20	05	P1J-S020DS-0005		30	P1J-S040DS-0030
M5 thread	10	P1J-S020DS-0010	-	40	P1J-S040DS-0040
	15	P1J-S020DS-0015	-	_50	P1J-S040DS-0050
	20	P1J-S020DS-0020		80	P1J-S040DS-0080
	25	P1J-S020DS-0025	50	05	P1J-S050DS-0005
	30	P1J-S020DS-0030	G1/8 thread	10	P1J-S050DS-0010
	40	P1J-S020DS-0040	- ,	15	P1J-S050DS-0015
	50	P1J-S020DS-0050		20	P1J-S050DS-0020
25	05		-	25	P1J-S050DS-0025
-	05	P1J-S025DS-0005	-	30	P1J-S050DS-0030
M5 thread	10	P1J-S025DS-0010	-	40	P1J-S050DS-0040
	15	P1J-S025DS-0015	-	50	P1J-S050DS-0050
	20	P1J-S025DS-0020	_	80	P1J-S050DS-0080
	25	P1J-S025DS-0025	63	25	
	30	P1J-S025DS-0030		05	P1J-S063DS-0005
	40	P1J-S025DS-0040	G1/8 thread	10	P1J-S063DS-0010
	50	P1J-S025DS-0050	-	15	P1J-S063DS-0015
32	05	P1J-S032DS-0005		20	P1J-S063DS-0020
G1/8 thread	10	P1J-S032DS-0010		25	P1J-S063DS-0025
	15	P1J-S032DS-0015		30	P1J-S063DS-0030
	20	P1J-S032DS-0020		40	P1J-S063DS-0040
	25	P1J-S032DS-0025		50	P1J-S063DS-0050
	30	P1J-S032DS-0030	-	80	P1J-S063DS-0080
	40	P1J-S032DS-0040		100	P1J-S063DS-0100
	50	P1J-S032DS-0050			
	80	P1J-S032DS-0080	-		

Data


Working pressure Working temperature Max. 10 bar Max. +80 °C Min. –20 °C

Single acting			Single acting	9	
Cyl. bore	Stroke	Order code	Cyl. bore	Stroke	Order code
mm	mm		mm	mm	
12	05	P1J-S012SS-0005	40	05	P1J-S040SS-0005
M5 thread	10	P1J-S012SS-0010	G1/8 thread	10	P1J-S040SS-0010
	15	P1J-S012SS-0015		15	P1J-S040SS-0015
20	05	P1J-S020SS-0005		20	P1J-S040SS-0020
M5 thread	10	P1J-S020SS-0005		25	P1J-S040SS-0025
wio tilleau	15	P1J-S020SS-0015		30	P1J-S040SS-0030
	20	P1J-S020SS-0020		40	P1J-S040SS-0040
	25	P1J-S020SS-0025	·	50	P1J-S040SS-0050
	30	P1J-S020SS-0030	50	05	P1J-S050SS-0005
25	05	P1J-S025SS-0005	G1/8 thread	10	P1J-S050SS-0010
M5 thread	10	P1J-S025SS-0005		15	P1J-S050SS-0015
wij li lieau	15	P1J-S025SS-0010		20	P1J-S050SS-0020
	20	P1J-S025SS-0015		25	P1J-S050SS-0025
	25	P1J-S025SS-0025		30	P1J-S050SS-0030
	30	P1J-S025SS-0025		40	P1J-S050SS-0040
	40	P1J-S025SS-0040	·	50	P1J-S050SS-0050
	50	P1J-S025SS-0050	63	05	P1J-S063SS-0005
32	05	P1J-S032SS-0005	G1/8 thread	10	P1J-S063SS-0010
G1/8 thread	10	P1J-S032SS-0005		15	P1J-S063SS-0015
G 1/o tilleau	15	P1J-S032SS-0010		20	P1J-S063SS-0020
	20	P1J-S032SS-0015		25	P1J-S063SS-0025
	25	P1J-S032SS-0025		30	P1J-S063SS-0030
	30	P1J-S032SS-0025		40	P1J-S063SS-0040
	40	P1J-S032SS-0040		50	P1J-S063SS-0050
	50	P1J-S032SS-0040			

Technical data

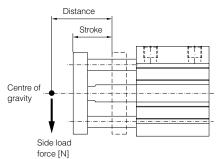
Working medium Working pressure Working temperature Dry, filtered compressed air Max. 10 bar -20 °C to +80 °C

Materials, external guide device

Mounting plate Guides Sleeves Securing bolts Anodised aluminium Stainless steel, DIN X 10 CrNiS 18 9 Multi-layer, PTFE/bronze/steel Surface-finished steel

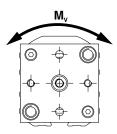
Other data as for the basic cylinder.

Guide unit

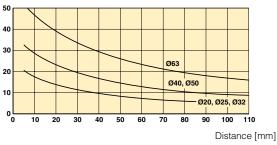

The P1J cylinders can be fitted with an external guide unit to prevent the piston rod from turning. It guides the piston rod and enables the cylinder to resist turning torques on the piston rod and/or transverse forces.

The device consists of a substantial mounting plate and twin guide rods that run in two support bearings. The mounting plate, which has pre-drilled mounting holes, is connected to the piston rod.

The device is available for 20, 25, 32, 40, 50 and 63 mm diameter cylinders, with stroke lengths from 5 to 100 mm. Order codes on Pages 6 and 10.


Permissible side loading

Permissible side loading as a function of the load distance as shown below.

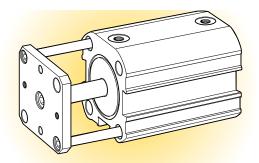


Permissible Torque

Permissible torque as shown below as a function of the load distance as shown in the load figure above.

Side load diagram Side load force [N]

Torque diagram


Parker Hannifin Corporation Pneumatic Division - Europe

Data

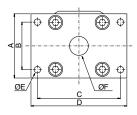
Working pressure Working temperature Max. 10 bar Max. +80 °C Min. –20 °C

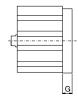
Double actir	ng, guided		Double actin		
Cyl. bore	Stroke	Order code	Cyl. bore	Stroke	Order code
mm	mm		mm	mm	
20	05	P1J-G020DS-0005	40	05	P1J-G040DS-0005
M5 thread	10	P1J-G020DS-0010	G1/8 thread	10	P1J-G040DS-0010
	15	P1J-G020DS-0015		15	P1J-G040DS-0015
	20	P1J-G020DS-0020		20	P1J-G040DS-0020
	25	P1J-G020DS-0025		25	P1J-G040DS-0025
	30	P1J-G020DS-0030		30	P1J-G040DS-0030
	40	P1J-G020DS-0040		40	P1J-G040DS-0040
	50	P1J-G020DS-0050		50	P1J-G040DS-0050
25	05	P1J-G025DS-0005		80	P1J-G040DS-0080
M5 thread	10	P1J-G025DS-0005	50	05	P1J-G050DS-0005
	15	P1J-G025DS-0015	G1/8 thread	10	P1J-G050DS-0010
	20	P1J-G025DS-0020		15	P1J-G050DS-0015
	25	P1J-G025DS-0025		20	P1J-G050DS-0020
	30	P1J-G025DS-0030		25	P1J-G050DS-0025
	40	P1J-G025DS-0040		30	P1J-G050DS-0030
M5 thread	50	P1J-G025DS-0050		40	P1J-G050DS-0040
				50	P1J-G050DS-0050
32	05	P1J-G032DS-0005		80	P1J-G050DS-0080
G1/8 thread	10	P1J-G032DS-0010	<u></u>		
	15	P1J-G032DS-0015	63	05	P1J-G063DS-0005
	20	P1J-G032DS-0020	G1/8 thread	10	P1J-G063DS-0010
	25	P1J-G032DS-0025		15	P1J-G063DS-0015
	30	P1J-G032DS-0030		20	P1J-G063DS-0020
	40	P1J-G032DS-0040		25	P1J-G063DS-0025
	50	P1J-G032DS-0050		30	P1J-G063DS-0030
	80	P1J-G032DS-0080		40	P1J-G063DS-0040
				50	P1J-G063DS-0050
				80	P1J-G063DS-0080
				100	P1J-G063DS-0100

Combinations

Parker Hannifin Corporation Pneumatic Division - Europe

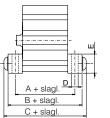
Flange, MF1

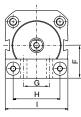



Foot bracket

Intended for fixed mounting of cylinder. This bracket can	12	0,012	P1J-4DMB
be fitted to front or rear end covers.	20	0,031	P1J-4HMB
	25	0,036	P1J-4JMB
Material:	32	0,052	P1J-4KMB
Bracket: Anodised aluminium	40	0,124	P1J-4LMB
Screws: Zinc plated steel	50	0,151	P1J-4MMB
	63	0,306	P1J-4NMB

Cyl.	А	В	С	D	Е	F	G
Ømm	mm	mm	mm	mm	mm	mm	mm
12	25,4	18	38	46,0	3,6	10	4,8
20	38,0	24	50	58,0	3,6	15	6,0
25	40,0	28	54	63,5	4,6	15	6,0
32	48,0	36	66	76,0	4,6	15	6,0
40	63,5	42	78	92,0	6,6	20	9,5
50	70,0	50	90	102,0	6,6	25	9,5
63	85,0	63	110	127,0	8,6	25	12,7


0



Intended for fixed mounting of cylinder. This bracket can be fitted to front or rear end covers.	12 20	0,015 0,016	P1J-4DMF P1J-4HMF
Material: Bracket: Anodised aluminium Screws: Zinc plated steel	25 32 40 50 63	0,034 0,030 0,060 0,072 0,178	P1J-4JMF P1J-4KMF P1J-4LMF P1J-4MMF P1J-4NMF
ma	00	0,170	

Cyl.	A1*	A2**	B1*	B2**	C1*	C2**	D	Е	F	G	Н	I
Ømm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
12	42,0	-	50,0	-	54,4	-	3,5	12,7	17,0	25	13	33
20	44,5	-	51,0	-	57,5	-	3,5	12,7	22,0	35	20	43
25	48,5	63,5	58,0	73,0	64,5	79,5	4,5	16,0	23,0	41	27	51
32	49,3	67,3	58,7	76,7	65,3	83,3	4,5	16,0	27,0	19	32	46
40	53,7	71,7	66,5	84,5	75,2	93,2	6,5	19,0	31,5	21	40	56
50	58,7	76,7	71,5	89,5	80,3	98,3	6,5	19,0	37,0	27	50	66
63	69,0	89,0	88,0	108,0	99,0	119,0	8,5	25,4	43,0	34	62	83

* Double acting cylinders and single acting cylinders up to stroke length 30 mm ** Single acting cylinders, stroke length 31 to 50 mm

Clevis

According to ISO 8140	
ntended for articulated mounting of the cylinder. This	
nounting is adjustable in the axial direction, and is supplied complete with shaft. Intended for use with the pin bolt.	

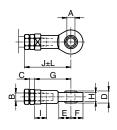
Material: Zinc plated steel

s F

P1J-4HRC	0.011
P1J-4HRC	0,011
P1A-4DRC	0,022
P1A-4DRC	0,022
P1A-4HRC	0,045
P1A-4HRC	0,045

Cyl.	А	В	С	D	Е	F	G	Н	1	J
Ømm	mm		mm	mm	mm	mm	mm	mm	mm	mm
20	5	M5	2,5	10	10	6	20	5	25	2,0
25	5	M5	2,5	10	10	6	20	5	25	2,0
32	6	M6	3,0	12	12	7	24	6	30	3,0
40	6	M6	3,0	12	12	7	24	6	30	3,0
50	8	M8	5,0	16	16	10	32	8	42	3,5
63	8	M8	5,0	16	16	10	32	8	42	3,5

Swivel rod eye					


Pin bolt

According to ISO 8139	12	0,008	P1J-4DRS
Intended for articulated mounting of the cylinder. This	20	0,019	P1J-4HRS
mounting is adjustable in the axial direction.	25	0,019	P1J-4HRS
	32	0,025	P1A-4DRS
Material:	40	0,025	P1A-4DRS
Swivel rod eye: Zinc plated steel	50	0,045	P1A-4HRS
Swivel: tempered steel	63	0,045	P1A-4HRS

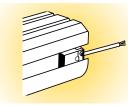
Cyl.	А	В	С	D	Е	F	G	Н	1	J	L
Ømm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm
12	3	MЗ	1,6	6	10	7	21	4,5	4,5	24,2	1,0
20	5	M5	2,5	8	10	9	27	6,0	7,5	34,5	1,0
25	5	M5	2,5	8	10	9	27	6,0	7,5	34,5	1,0
32	6	M6	3,0	9	10	10	30	6,8	9,0	38,5	1,5
40	6	M6	3,0	9	10	10	30	6,8	9,0	38,5	1,5
50	8	M8	5,0	12	12	12	36	9,0	12,0	49,0	2,0
63	8	M8	5,0	12	12	12	36	9,0	12,0	49,0	2,0

Material: Zinc plated steel

Intended for securing to the piston rod. The bolt can be combined with the swivel mount or clevis mount.

P1J-6DS0
P1J-6HS0
P1J-6HS0
P1J-6KS0
P1J-6KS0
P1J-6MS0
P1J-6MS0

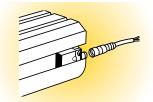
Cyl.	А	В	С	D	Е
Ømm	mm	mm	mm	mm	
12	1,5	5,5	1,6	10	MЗ
20	2,5	8,0	2,5	20	M5
25	2,5	8,0	2,5	20	M5
32	3,0	10,0	3,0	25	M6
40	3,0	10,0	3,0	25	M6
50	4,0	13,0	5,0	25	M8
63	4,0	13,0	5,0	25	M8



18

P8S-DRFLX

P8S-DPFLX


Reed switch sensors

These sensors are based on a thoroughly proven reed switch, suitable for use at a wide range of voltages. This, together with the compact size and simple dovetail mounting, makes these sensors suitable for a wide range of applications. They can interface with electronic control systems, relay systems or conventional valves.

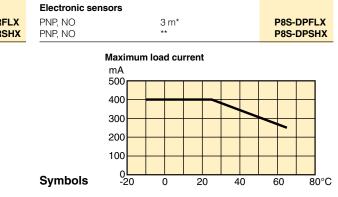
Technical data cificatio

P8S-DRFLX, 3 m P8S-DRSHX
Reed switch
Normally open
0-110 VAC/VDC
0-60 VAC/VDC
2.8 V
380 mA
10 W
11 mm
±0,1 mm
500 Hz
1 ms
IP 67
-10 °C to +70 °C
LED, red
Polyamide
PVC 2x0,2 mm ²
PVC 3x0,2 mm ²
55 g
8 g
90 g
146 g
286 g
Dovetail

P8S-DRSHX P8S-DPSHX

Electronic sensors

The electronic sensors are solid state sensors with no moving parts, and include squelch and transient protection circuitry as standard. The integral electronics make these sensors suitable for use in applications with very high switching frequencies.

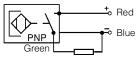

Technical data Specification P8S-DPFLX, 3 m P8S-DPSHX Hall element Туре PNP, N.O. Output Voltage range 10-28 VDC Maximum voltage drop 1 V Maximum load current See diagram below Maximum interrupting capacity (resistive) 12 W Minimum activation distance 12 mm ±0,1 mm Repetition accuracy Maximum operating frequency 1 kHz Maximum response time 0.01 ms Protection class IP 67 Operating temperature range –10 °C to +70 °C Indication LED, red Material, sensor casing Polyamide PVC 2x0,2 mm² Cable Cable including female connector PVC 3x0,2 mm² Weight, sensor with 3 m cable 55 g Weight, sensor with male connector 8 g Weight, cable with connector, 3 m 90 g 146 g Weight, cable with connector, 5 m 286 g Weight, cable with connector, 10 m Fitting Dovetail

Output	Cable length	Order code
Reed switch sensors		
Normally open Normally open	3 m* **	P8S-DRFLX P8S-DRSHX

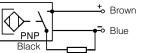
* Moulded cable

Ordering data

** Cable must be ordered separately.

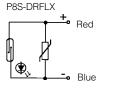

Cable

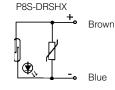
length


P8S-DPFLX

Ordering data

Output





Order code

Parker Hannifin Corporation Pneumatic Division - Europe

Connecting cables with one connector

The cables have an integral snap-in female connector.

Type of cable	Cable/connector	Weight	Order code
		kg	
Cables for sensors, complete	with one female connector		
Cable, Flex PVC	3 m, 8 mm Snap-in connector	0,07	9126344341
Cable, Flex PVC	10 m, 8 mm Snap-in connector	0,21	9126344342
Cable, Super Flex PVC	3 m, 8 mm Snap-in connector	0,07	9126344343
Cable, Super Flex PVC	10 m, 8 mm Snap-in connector	0,21	9126344344
Cable, Polyurethane	3 m, 8 mm Snap-in connector	0,01	9126344345
Cable, Polyurethane	10 m, 8 mm Snap-in connector	0,20	9126344346
Cable, Polyurethane	5 m, M12 screw connector	0,07	9126344348
Cable, Polyurethane	10 m, M12 screw connector	0,20	9126344349

Male connectors for connecting cables

Cable connectors for producing your own connecting cables. The connectors can be quickly attached to the cable without special tools. Only the outer sheath of the cable is removed. The connectors are available for M8 and M12 screw connectors and meet protection class IP 65.

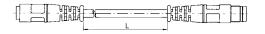
Connector	Weight kg	Order code
M8 screw connector	0,017	P8SCS0803J
M12 screw connector	0,022	P8SCS1204J

Ready to use connecting cables with connectors at each end

As accessories the system comprises a large number of different cables in order to meet all requirements that may arise and to make the installation simple, fast and reliable.

Cables with moulded 8 mm snap-in round contacts in both ends. The cables are available in two types, one with a straight male and female connectors respectively, and one with a straight 3-pole male connector in one end and an angled 3-pole female connector in the other end.

Technical data


Contacts

Moulded 8 mm snap-in male/female contacts. Enclosure IP67

Cable

Conductor Sheath Colour 3x0,25 mm² (32x0,10 mm²) PVC/PUR Black

Cables with straight 3-pole male and female connectors respectively.

Cables with a straight 3-pole male connector in one end and an angled 3-pole female connector in the other end.

Designation	Weight kg	Order code	Designation Weight kg	Order code
Cable with straight contacts, 0,2 m	0,02	9121717014	Cable with straight and angled connectors, 0,2 m 0,02	9121717022
Cable with straight contacts, 0,3 m	0,02	9121717015	Cable with straight and angled connectors, 0,3 m 0,02	9121717023
Cable with straight contacts, 0,5 m	0,03	9121717016	Cable with straight and angled connectors, 0,5 m 0,03	9121717024
Cable with straight contacts, 1,0 m	0,03	9121717017	Cable with straight and angled connectors, 1,0 m 0,03	912171702
Cable with straight contacts, 2,0 m	0,05	9121717018	Cable with straight and angled connectors, 2,0 m 0,05	912171702
Cable with straight contacts, 3,0 m	0,07	9121717019	Cable with straight and angled connectors, 3,0 m 0,07	912171702
Cable with straight contacts, 5,0 m	0,12	9121717020	Cable with straight and angled connectors, 5,0 m 0,12	912171702
Cable with straight contacts, 10 m	0,23	9121717021	Cable with straight and angled connectors, 10 m 0,23	912171702

Connection block Valvetronic 110

Ten 3-pole numbered 8 mm round snap-in female contacts

Input block

Pin 1

Pin 2

Pin 3

Output block

Pin 1

Pin 2

Pin 3

total max. 3 A

3 m or 10 m LifYY11Y

12 0.34 mm²

The Valvetronic 110 is a connection block that can be used for collecting signals from sensors at various points on a machine and connecting them to the control system via a multicore cable. Valvetronic 110 can also be used for central connection of the multi-core cable to the outputs of a control system, and can be laid to a machine where the output signals can be connected. The connection block has ten 8 mm snap-in circular connectors and a multi-core cable which is available in lengths of 3 or 10 m. The connections on the block are numbered from 1 to 10. Blanking plugs are available for unused connections, as labels for marking the connections of each block.

Common, +24 VDC

Input signal

Common. 0V

Common, GND

24 VDC (max. 60 V AC/75 V DC) according to DIN 0110 class C max. 1 A per connection

Output signal

Common, 0V

According to DIN 47 100

Mechanical data

Enclosure

Temperature

Material Body Contact holder Snap-in ring Moulding mass Seal Screws

PA 6,6 VD according to UL 94 PBTP LDPE Epoxy

blanking plugs.

NBR

Plated steel

–20 °C to +70 °C

IP 67, DIN 40050 with fitted contacts and/or

Industrial durability

Good chemical and oil resistance. Tests should be performed in aggressive environments.

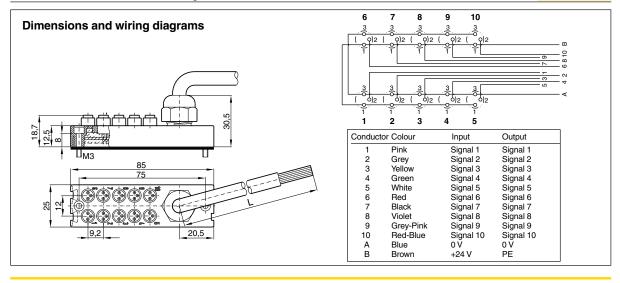
Cable:

Voltage

Length Type of cable Conductor Area Colour marking

Technical data Connections:

3001


3@)

Electrical data:

Insulation group Load

Ordering data

	Designation	Weight kg	Order code
	Connection block Valvetronic 110 with 3 m cable Connection block Valvetronic 110 with 10 m cable	0,32 0,95	9121719001 9121719002
	Blanking plugs (pack of 10) Use blanking plugs to close unused connections.	0,02	9121719003
D	Labels (pack of 10) White labels to insert in grooves on the side of the connection	0,02	9121719004

Parker Hannifin Corporation Pneumatic Division - Europe

Notes

INOTES		
_		
		Parker Hannifin Corporation Pneumatic Division - Europe
	22	Fileumatic Division - Europe

Subject to Change