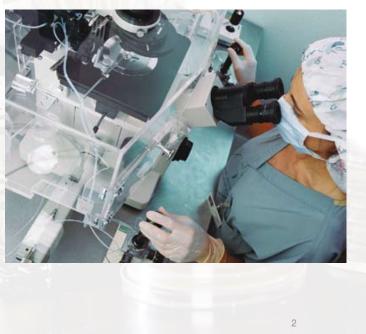


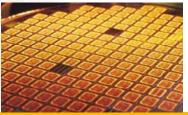
aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

Precision Technology

XR Series Screw Driven Linear Positioners

ENGINEERING YOUR SUCCESS.





Parker Facility in Offenburg, Germany Manufacturing and Service for Precision Components in Europe

Precision Automation

Applications and industries integrating precision motion control have requirements that exceed most motion product capabilities - levels of accuracy, repeatability, straightness, flatness and orthogonality that demand specialized product designs and manufacturing capabilities. With more than 25 years of product design and manufacturing experience in the most demanding precision motion markets, Parker is ready to provide the products and systems to serve our customers' most challenging needs.

Customization and Services

Unlike many other motion technologies, precision electromechanical applications often require custom solutions. Many solutions are complete one-of-a kind systems.

Our experienced engineers and technicians provide:

- Application advice
- Product sizing and selection, including mechanics, motors, drives and controls
- System design
- System manufacturing including testing and axis alignment
- · System commissioning
- System maintenance

Parker Precision Automation customers can receive many optional services such as:

- 3D Custom assembly drawings
- Matches motor control systems
- Life-load diagrams
- Customized cabling systems

Advanced Manufacturing Capabilities

Our advanced manufacturing and assembly process allows us to build quality and consistency into every element of your motion system. Each mechanical system is fully assembled prior to shipment and each component is properly handled to protect finish and appearance. While providing advanced manufacturing capabilities, we also strive to maintain the industry's best lead times for precision motion products. **Performance and specifications are verified with state-of-the-art testing, including**

- Cleanroom-approved versions - Parker is equipped with in house particulate testing facilities to certify materials for cleanroom ratings.
- EMI testing Parker has an EMI test chamber, which allows us to test equipment to verify levels of electromagnetic interference.
- Precision Metrology Lab When precision is critical to your process, you need validated, proven performance data. Parker certifies all precision-grade positioners using state-of-the-art laser interferometers, and provides reports to validate accuracy and bidirectional repeatability.

Parker Automation Technology Centers

Parker Automation Technology Centers are a network of premier product and service providers who can serve you locally for your automation needs. Each Automation Technology Center is certified to have completed significant product training and has the ability to provide subsystem solutions with local support. Parker Automation Technology Centers are located throughout Europe, and are served by our European manufacturing facility in Offenburg, Germany.

Selectable Levels of Integration

Parker's **Selectable Levels of Integration** is a philosophy of product development and management that allows the machine builder to select an appropriate system, subsystem, or component to meet a specific need. Parker has solutions for machine builders of all types, from those who want a complete integrated system to those who want to build their own system from "best of breed" components.

Systems

Machine builders and OEMs often choose to integrate a complete electromechanical system into their machine. They have confidence in knowing that our knowledge, experience, and support will ensure that their goals are met. Minimal design engineering ensures component compatibility from a single source.

Subsystems and Bundled Products

For a cost-effective and efficient solution, Parker offers bundled or kitted systems. We can combine motors, gearheads, and positioning systems to deliver a configured subsystem ready for installation. Parker configuration and setup software accommodates the rest of the product line, making startup a snap. Combining this with our custom product modification capabilities gives the machine builder an economical custom-fit solution, with reduced engineering effort, straightforward integration, and modular compatibility.

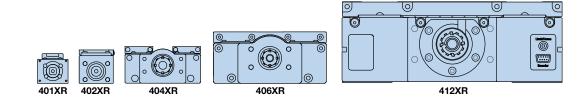
Component Products

We offer the broadest range of linear and rotary motion products available for automation systems. If you have the capability and experience to develop your own systems, our innovative, easy-to-use products will help you get the job done. Parker provides short lead times, large selection, and proven reliability.

XR Series

www.parker-eme.com/XR

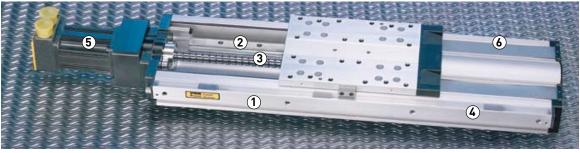
XR Series Features


XR Series Precision Linear Positioners

- Pre-engineered package
- Performance matched components
- Environmental protection
- Laser certified precision

Typical enhancements

- Limit/home position sensors
- Linear encoder
- Cleanroom prep
- Multi-axis brackets & adapters
- Selectable motor mounts
- Servo motors and drives
- Programmable controls
- Cable management system



Style	Unit	401XR	402XR	404XR	406XR	412XR
Stroke	[mm]	300	600	600	2000	2000
Load	[kg]	50	100	170	630	1470
Acceleration	[m/s ²]	20	20	20	20	20

The "XR" precision linear positioners family has achieved global recognition for consistent accuracy, reliable performance, high strength, and unmatched versatility. The XRs have excelled in industries such as life sciences, fiber optics and instrumentation, where the highest degree of precision is required. And yet, because of the rugged construction, strength, and sealed design, these units have been used extensively for industrial automation applications (packaging, automotive, etc). The XR family offers an unrivaled array of features and options which are easily matched to fit any application, from the very basic to the highly complex. Premier performance, modular compatibility, and quick delivery have made these tables the perfect building blocks for precision multi-axis systems.

404XR

① High strength extruded aluminum body

Extruded aluminum housing is precision machined to provide outstanding straightness and flatness.

② Rack-and-pinion guiding

These tables are equipped with rack-and-pinion guiding which provide high load carrying capabilities, smooth precise motion and dependable performance.

③ High efficiency ballscrew drive

Precision ground, or rolled ballscrew drive (5, 10, 20, 25, 32 mm lead) offers high throughput, efficiency, accuracy and repeatability.

④ Home/limit sensors

Proximity sensors establish end of travel and "home" location and are easily adjustable over entire length to restrict the travel envelope.

⑤ Motor mounts

A large selection of servo and stepper motor sizes plus selectable mounting configurations (in-line, parallel) permit a wide variety of motor mounting possibilities.

(6) IP30 rated strip seals

An anodized aluminum cover combined with stainless steel strip seals provide IP30 protection to interior components as well as enhance the overall appearance.

Encoders

The linear encoder option offers direct positional feedback of the carriage location. The rotary shaft encoder couples directly to the drive shaft to nullify any incurred mechanical error (particularly useful with the parallel motor mount). Not shown.

Shaft brake

The electromagnetic shaft brake option couples directly to the drive screw and is employed primarily on vertical axes to halt carriage motion during a power loss. Not shown.

Convenient mounting slots

A continuous T-slot along the side of the table body provides a convenient means of mounting the table to a work surface as well as mounting accessories to the table.

Positive pressure port

A standard port (1/8 NPT) for pressurizing the interior to prevent particle intrusion. (Standard on 404XR, 406XR; 412XR units).

Easy lube system

A standard option on some models, enables easy access for ballscrew and bearing lubrication.

For Multi axes combinations see Applications

Cleanroom prep Class 10 cleanroom preparation is a standard option for the XR series.

XR Series Technical Data

401XR and 402XR Technical Data

www.parker-eme.com/401-402XR

401XR (41 mm wide profile)

402XR series (58 mm wide profile)

The 401XR and 402XR Series positioners enhance the XR family of precision linear positioners, addressing applications which involve precise positioning of smaller payloads within a very small space envelope. These ballscrew driven positioners were developed to address the needs of industries such as photonics, life sciences, semiconductor, and instrumentation, where technology

Carriage equipped with dowel locating holes for repeatable positioning of tooling or payload.

Common characteristics

Ob da	Linit	Preci	sion*	Stan	dard
Style	Unit	401XR	402XR	401XR	402XR
Bidirectional repeatability					
2 mm lead	[µm]	±1.3	-	±5	-
5 or 10 mm lead		±1.3	±1.3	±12	±12
Duty cycle	[%]	100	100	100	100
Maximum acceleration	[m/s ²]	20	20	20	20
Normal force ⁽¹⁾	[N]	490	980	490	980
Axial force ⁽¹⁾					
2 mm lead	[N]	54	-	54	-
5 or 10 mm lead		152	372	152	372
Drive screw efficiency	[%]	80	80	80	80
Maximum breakaway torque	[Nm]	0.03	0.086	0.03	0.086
Maximum running torque ⁽²⁾	[Nm]	0.028	0.08	0.028	0.08
Linear bearing friction coefficient	-	0.01	0.01	0.01	0.01
Ballscrew diameter					
2 mm lead	[mm]	6	-	6	-
5 or 10 mm lead		8	12	8	12
Weight of carriage	[kg]	0.045	0.11	0.045	0.11

* Requires linear encoder option E3 or E4. (1) see life load charts. (2) Ratings established at a screw speed of 2 s⁻¹.

of work envelopes.

Travel dependent specifications

Travel [mm]	Positional accuracy* [µm]		flatr	tness & 1ess m]	Input moment of inertia [10 ⁻⁷ kgm²]			Max screw speed [s ⁻¹]		Weight [kg]				
	401	XR	402	XR	401XR	402XR	401	XR	402	XR	401XR	402XR	401XR	402XR
	Precision	Standard	Precision	Standard			2 mm	10 mm	5 mm	10 mm				
50	10	20	-	-	20	-	0.6	-	-	-	100	-	1.0	-
100	10	20	10	20	20	20	0.9	-	12.0	-	100	90	1.2	2.3
150	12	20	12	20	20	20	1.1	-	15.0	-	100	90	1.3	2.6
200	16	30	16	30	25	25	-	4.7	20.0	-	100	90	1.5	2.8
300	18	40	18	40	25	25	-	5.2	-	25.0	100	90	1.7	3.2
400	-	-	21	40	-	30	-	-	—	29.0	-	95	-	3.8
600	-	-	25	50	-	30	-	-	-	39.0	-	50	-	4.8

* Values established at 20 °C ambient temperature utilizing slope correction factor provided.

404XR Technical Data

www.parker-eme.com/404-412XR

404XR (95 mm wide profile)

The 404XR is a slim, compact positioning stage (47.3 x 95 mm) able to transport payloads up to 170 kg over a travel of 700 mm. Its fast and precise positioning properties are due to the extremely robust extruded profile, the ball bearings and the precisionground rack-and-pinion drive. With its low profile design the 404XR is ideal for height restricted applications, and its lightweight construction makes it well suited as secondary axes on multi-axis systems. These units offer a wide array of easily adapted options and accessories which permit easy configuration to specific requirements.

Parallel Motor Mount (with limit/home sensor pack option)

Common characteristics

Type 404XR	Unit	Precision	Standard
Bidirectional repeatability ⁽⁵⁾	[µm]	±1.3	±3
Duty cycle Ballscrew	[%]	100	100
Maximum acceleration	[m/s ²]	20	20
Normal force ⁽¹⁾	[N]	1667	1667
Axial force ⁽²⁾ Ballscrew	[N]	882	882
Drive screw efficiency Ballscrew	[%]	90	90
Maximum breakaway torque	[Nm]	0.13	0.18
Maximum running torque ⁽³⁾	[Nm]	0.11	0.17
Linear bearing friction coefficient	-	0.01	0.01
Ballscrew diameter	[mm]	16	16
Weight of carriage	[kg]	0.70	0.70

(1) see life load charts.

- (2) Axial load for parallel mount is limited by a maximum input torque of 25 Nm.(3) Ratings established at a screw speed
- of 2 s⁻¹. (4) Positional accuracy applies to in-line
- motor configurations only. Contact factory for parallel motor specifications. (5) Consult factory for specifications with
- linear encoder.(6) Consult factory for higher screw speeds.

Travel dependent specifications

Travel [mm]	Positional ac [µn		Straightness & flatness [µm]	Input moment of inertia [10 ⁻⁵ kgm²]		of inertia speed ⁽⁶⁾		speed ⁽⁶⁾	Weight [kg]
	Precision	Standard		5 mm	10 mm	20 mm			
50	8	12	6	1.68	1.81	2.34	60	2.8	
100	8	12	6	1.93	2.07	2.60	60	3.0	
150	10	14	9	2.19	2.32	2.85	60	3.3	
200	12	20	10	2.44	2.57	3.11	60	3.6	
250	12	22	12	2.69	2.83	3.36	60	3.9	
300	14	24	13	2.95	3.08	3.61	60	4.2	
350	14	26	15	3.20	3.33	3.87	60	4.5	
400	16	26	16	3.46	3.59	4.12	60	4.8	
450	19	28	18	3.71	3.84	4.37	60	5.1	
500	21	34	19	3.96	4.10	4.63	60	5.4	
550	23	36	21	4.22	4.35	4.88	60	5.7	
600	25	40	22	4.47	4.60	5.14	54	6.0	

Values established at 20 °C ambient temperature utilizing slope correction factor provided.

406XR Technical Data

www.parker-eme.com/404-412XR

406XR (150 mm wide profile)

The 406XR can position high loads (up to 6.2 kN) over distances up to two meters. Because of its size and strength (270 Nm moment load capacity) this table is ideal as the base unit in a multi-axis system. From high resolution to high throughput, selectable ballscrew leads (5, 10, 20, 25 mm) make the desired resolution/ velocity ratio easy to achieve, and stainless steel seal strips alleviate environmental concerns.

Parallel Motor Mount (with limit/home sensor pack option)

Common characteristics

Type 406XR	Unit	Precision	Standard
Bidirectional repeatability (5)	[µm]	±1.3	±3
Duty cycle	[%]	100	100
Maximum acceleration	[m/s ²]	20	20
Normal force ⁽¹⁾	[N]	6178	6178
Axial force ⁽²⁾			
0 to 600 mm travel	[N]	882	882
700 to 2000 mm travel		-	1961
Drive screw efficiency	[%]	90	90
Maximum breakaway torque			
0 to 600 mm travel	[Nm]	0.13 (18)	0.18
700 to 2000 mm travel		-	0.39
Maximum running torque ⁽³⁾			
0 to 600 mm travel	[Nm]	0.11	0.17
700 to 2000 mm travel		-	0.34
Linear bearing friction coefficient	-	0.01	0.01
Ballscrew diameter			
0 to 600 mm travel	[mm]	16	16
700 to 2000 mm travel		-	25
Weight of carriage	[kg]	2.7	2.7

(1) see life load charts.

- (2) Axial load for parallel mount is limited to: 63.5 kg for the 5, 10 and 20 mm lead drives: 104 kg for 25 mm lead drives
- (3) Ratings established at a screw speed of 2 s⁻¹.
- (4) Positional accuracy applies to in-line motor configurations only. Contact factory for parallel motor specifications.
- (5) Consult factory for specifications with linear encoder.
- (6) Consult factory for higher screw speeds.

Travel dependent specifications

Travel [mm]	accura	tional Icy ^{(4) (5)*} m]	Straightness & flatness [µm]	Input moment of inertia [10 ^{-§} kgm²]			Max screw speed ⁽⁶⁾ [s ⁻¹]	Weight [kg]	
	Präzision	Standard		5 mm	10 mm	20 mm	25 mm		
100	8	12	6	3.34	3.85	5.90	-	60	8.7
200	12	20	10	3.92	4.43	6.48	-	60	10.0
300	14	24	13	4.50	5.01	7.06	-	60	11.3
400	16	26	16	5.08	5.59	7.64	-	60	12.6
500	21	34	19	5.65	6.17	8.22	-	55	13.9
600	25	40	22	6.23	6.75	8.80	-	44	15.2
700	-	92	25	36.51	37.02	-	40.61	47	19.2
800	-	94	29	39.96	40.47	-	44.07	47	20.7
900	-	103	32	43.41	43.93	_	47.52	47	22.2
1000	-	105	35	46.87	47.38	-	50.97	47	23.7
1250	-	118	42	55.50	56.01	-	59.61	35	27.6
1500	-	134	50	64.14	64.65	-	68.24	26	31.4
1750	-	154	57	72.77	73.28	-	76.88	20	35.2
2000	-	159	65	81.40	81.92	-	85.51	16	39.1

Values established at 20 °C ambient temperature utilizing slope correction factor provided.

412XR Technical Data

www.parker-eme.com/404-412XR

412XR (285 mm wide profile)

The 412XR is a rugged heavy duty linear table (285 mm x 105 mm profile) that enables massive loads (up to 14.4 kN) to be precisely positioned over distances up to two meters. The lubricating hole for easy maintenance is a standard feature of the carriage. The easy to mount adaptor plate (Art. No. 100-6784-01) for simple X-Y configuration is available as an accessory. An unrivaled array of options combined with mounting compatibility with the smaller XR tables makes the 412XR ideal as the base unit for multiaxis positioning of heavier payloads.

Common Characteristics

Type 412XR	Unit	Stan	dard
Screw Lead	[mm]	5, 10, 25	32
Bidirectional repeatability ⁽⁴⁾	[µm]	±5	±5
Duty cycle	[%]	100	100
Maximum acceleration	[m/s ²]	20	20
Normal force ⁽¹⁾	[kN]	14.4	14.4
Axial force	[kN]	1.96	4.51
Drive screw efficiency	[%]	90	80
Maximum breakaway torque	[Nm]	0.61	0.76
Maximum running torque ⁽²⁾	[Nm]	0.55	0.69
Linear bearing friction coefficient	-	0.01	0.01
Ballscrew diameter	[mm]	25	32
Weight of carriage	[kg]	12	13

- (1) See life load charts.
- (2) Ratings established at a screw speed of 2 s⁻¹.
- (3) Positional accuracy applies to in-line motor configurations only. Contact factory for parallel motor specifications.
- (4) Consult factory for specifications with linear encoder.
- (5) Consult factory for higher screw speeds.

Travel Dependent Specifications

Travel [mm]	Positional- accuracy ^{(3 (4)*} [µm]	Straightness & flatness [µm]	Input moment of inertia [10⁵kgm²]			Max screw speed ⁽⁵⁾ [s ⁻¹]		Weight [kg]		
			5 mm	10 mm	25 mm	32 mm	5. 10. 25 mm	32 mm	5. 10. 25 mm	32 mm
150	64	9	27.20	29.45	46.76	98.20	47	42	39.6	41.5
250	66	12	30.21	32.46	49.78	106.28	47	42	42.9	45.0
350	71	15	33.23	35.48	52.79	114.37	47	42	46.2	48.5
650	91	24	42.27	44.52	61.83	138.63	47	42	56.1	59.0
800	94	29	46.79	49.04	66.35	150.76	47	42	61.0	64.2
1000	105	35	52.81	55.06	72.37	166.94	45	42	67.6	71.2
1250	118	42	58.84	61.09	78.40	183.11	34	41	74.2	78.2
1500	134	50	67.87	70.12	87.44	207.38	24	31	84.1	88.7
1750	154	57	75.41	77.66	94.97	227.59	18	24	92.4	97.5
2000	159	65	82.94	85.19	102.50	247.81	15	19	100.6	106.2

Values established at 20 °C ambient temperature utilizing slope correction factor provided.

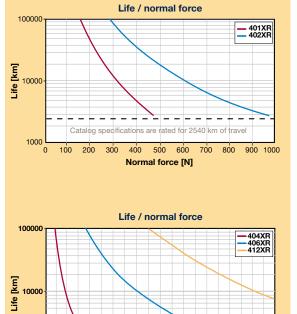
XR Series Life / Load Diagrams

XR Series Life / force

The following performance information is provided as a supplement to the product specification pages. The following graphs are used to establish the table life relative to the applied loads. The useful life of a linear table at full catalog specifications is dependent on the forces acting upon it. These forces include both static components resulting from payload weight and dynamic components due to acceleration/deceleration of the load. In multi-axis applications, the primary positioner at the bottom of the stack usually establishes the load limits for the combined axes. When evaluating life versus load, it is critical to include the weight of all positioning elements that contribute to the load supported by the primary axis. Catalog load specifications are rated for 2540 km of travel.

Normal force

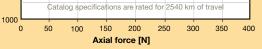
1000

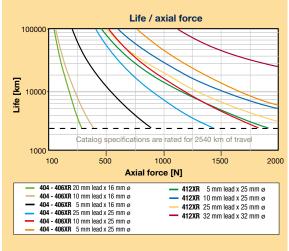

0

These graphs provide a "rough cut" evaluation of the support bearing life/load characteristics. The curves show the life/load relationship when the applied load is centered on the carriage, normal (perpendicular) to the carriage mounting surface.

Axial force (thrust force)

100000

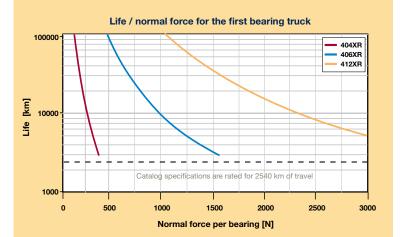

These graphs illustrate table ballscrew life relative to the axial force.

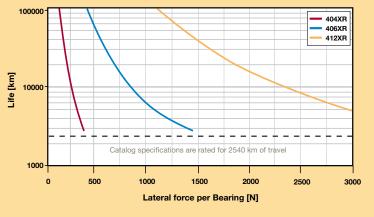

Catalog specifications are rated for 2540 km of travel

Normal force [N]

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Life / axial force


XR Series bearing life / force


These charts are to be used in conjunction with the corresponding formulas found in the product manuals at www.parker-eme.com/ xr to establish the life/force for each bearing (4 per table).

Several dimensions, which are specific to each linear positioning table model, and the load geometry are required for these computations. These dimensions are supplied in the manual for each positioner. The dimensions are referenced as follows:

- d1 bearing block center-to-center longitudinal spacing
- d2 bearing rail center-to-center lateral spacing
- da rail center-to-carriage mounting surface

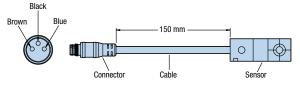
	d1 d2		da
		[mm]	
404XR	80	57	28
406XR	114	90.3	42.5
412XR	205	192	43

Life / lateral force for the first bearing truck

Refer to Parker's website www.parker-eme.com/xr

XR Series Options

Home and limit sensor options


End of Travel and Home Sensors for the XR series are available in a variety of styles. The sensors can be ordered as part of the table or as separate components with the associated mounting hardware or in a sensor pack. A 5 m high-flex extension cable for models 401XR to 406XR with locking connector option comes with the device.

- NPN (Sinking) or PNP (Sourcing)
- Normally closed contact or normally open contact
- Flying Leads or Locking Connector

401XR Limits and Home Sensor

Technical data			Target
Power input	5-30 VDC, 20 mA		
Output	100 mA max	1	
Wire color	(+) Supply: brown		
Decoder	(-) Supply: blue normally open: black normally closed: white		

Order code	Part No.*	Switch type	Logic	Cable length	Connector option
H2 or L2	006-1639-01	N.C.	NPN (sinking)	3.0 m	Flying leads
H3 or L3	006-1639-02	N.O.	NPN (sinking)	3.0 m	Flying leads
H4 or L4	006-1639-03	N.C.	PNP (sourcing)	3.0 m	Flying leads
H5 or L5	006-1639-04	N.O.	PNP (sourcing)	3.0 m	Flying leads
H6 or L6	006-1639-09	N.C.	NPN (sinking)	150 mm	Locking connector
H7 or L7	006-1639-08	N.O.	NPN (sinking)	150 mm	Locking connector
H8 or L8	006-1639-11	N.C.	PNP (sourcing)	150 mm	Locking connector
H9 or L9	006-1639-10	N.O.	PNP (sourcing)	150 mm	Locking connector
H11 or L11	Contact factory	N.C.	NPN (sinking)	Contact factory	Sensor pack
H12 or L12	Contact factory	N.O.	NPN (sinking)	Contact factory	Sensor pack
H13 or L13	Contact factory	N.C.	PNP (sourcing)	Contact factory	Sensor pack
H14 or L14	Contact factory	N.O.	PNP (sourcing)	Contact factory	Sensor pack

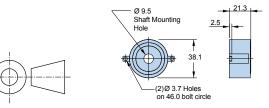
*Applies to 401XR through 406XR models. 412XR models have limits and homes internally mounted with a connector termination. Sensor triggers (targets) ordered separately.

Sensor pack cable

ŀ	4		Total cable length		75mm
20					
	Description	Part number	Wire color	Function	Pin number
	3 m	006-1742-01	Red	+5 to +24 VDC	A
	7.5 m	006-1742-02	Blue	Limit 1 (LXR –)	В
			Orange	Limit 2 (LXR +)	С
			Green	Home	D
			Black	Ground	E
406XR with Limit and Home Sensor Pack			Green/Yellow	Shield	Shield case

Linear encoder (tape scale) option

A linear position feedback device which mounts directly to the table carriage. (Factory installation required).


- 1.0 µm resolution
- 0.5 µm resolution
- 0.1 µm resolution

Rotary encoder option

Modular rotary encoder couples directly to the drive screw for position feedback and is easily field installed. The rotary encoder cannot be installed with the brake assembly option.

• 5000 counts/rev

Note: Dimensions shown apply to 404XR and 406XR models. Consult factory for 412XR dimensions.

Technical data	
Power input	5 VDC, 150 mA
Output	A/B quadrature and reference marks, diffe- rential line drive output
Resolution	1.0, 0.5, 0.1 μm
Cable length	3 m

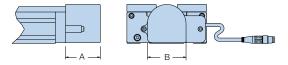
 Technical data

 Power input
 5 VDC, 135 mA

 Output
 A/B quadrature and reference marks, differential line drive output

 Resolution
 1250 lines/rev equals 5000 counts post quadrature (1 µm with 5 mm lead ballscrew)

 Cable length
 150 mm


401XR with Linear Encoder plus Sensor Pack

Brake assembly option

An electromagnetic brake assembly prevents backdriving in vertical applications. It is furnished with a 5 m connection cable. The brake option is easily field installed. The brake option can however not be installed with the rotary encoder option.

404XR with Brake Option

Frame size	Part number	Power input	Holding torgue	Dimensions [mm]		
Fidilie Size	Part number	Fower input	Holding torque		В	
401XR/402XR	—	—	—	—	—	
404XR	006-1627-01	24 VDC, 0.46 A	2.0 Nm	41.5	46.0	
406XR	006-1656-01	24 VDC, 0.5 A	4.5 Nm	49.9	57.5	
412XR	002-1916-01	24 VDC, 0.75 A	9.0 Nm	54.0	72.0	

Dowel pinning options*

Standard dowel pin locating holes are offered on most XR units to facilitate repeatable mounting of tooling or payload.*

In addition, pinning options are offered for precise orthogonal mounting of the second axis in a multi-axis system. In this case, the bottom side of the table base is match drilled and reamed to the first axis to provide exact orthogonal location. This convenient option eliminates concerns regarding contamination or damage often associated with machining for locating pins in an assembled unit.

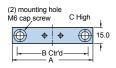
* Not available with 401XR or 402XR or 50 mm travel 404XR.

Two locating dowel pins shown in carriage

XR Series Accessories

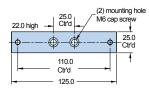
Riser plate accessory

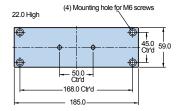
Used to raise the table base to provide clearance for motors.


Frame size	Art. no.
401XR	002-2063-01
402XR	002-2064-01
404XR	002-3619-01
406XR	002-3625-01
412XR	-

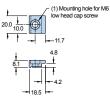
Toe clamp accessory

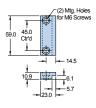
Used for convenient mounting of table to a base plate, riser plates, Z-axis bracket, or other XR table. All hardware is included.

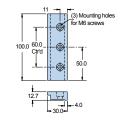

Frame size	Art. no.
404XR	002-3618-01
406XR	002-3624-01
412XR	002-2160-01



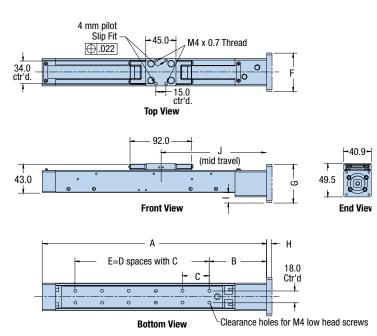
Frame Size	Dimensions [mm]						
Frame Size	Α	В	С				
401XR	65.0	50.4	17.0				
402XR	90.0	75.4	10.0				

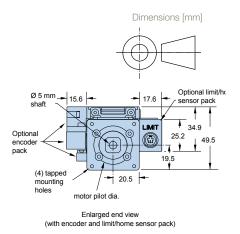

404XR Art. no.: 002-3619-01


406XR Art. no.: 002-3625-01



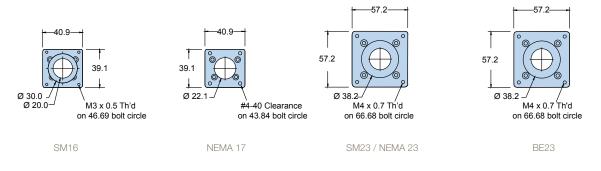
406XR Art. no.: 002-3624-01


412XR Art. no.: 002-2160-01



XR Series Dimensions

401XR Dimensions



	Stroke	Dimensions [mm]				Order		Di	mensio	ons [m	m]		
Frame Size	[mm]	Α	В	С	D*	E	J	code	Motor size	F	G	н	1
401050XR	50	209.3	82.8	80.0	1	80.0	123.0	M2	SM16	40.9	39.1	-	6.5
401100XR	100	284.3	80.3	40.0	4	160.0	160.0	МЗ	NEMA 23/	57.2	57.2	4.0	15.0
401150XR	150	334.3	85.3	40.0	5	200.0	185.0	IVIS	SM23	57.2	57.2	4.0	15.6
401200XR	200	384.3	90.3	40.0	6	240.0	210.0	M37	NEMA 17	40.9	39.1	-	6.5
401300XR	300	509.3	92.8	40.0	9	360.0	260.0	M61	BE23	57.2	57.2	8.0	15.6

* D = Number of spaces

In-line motor adapters

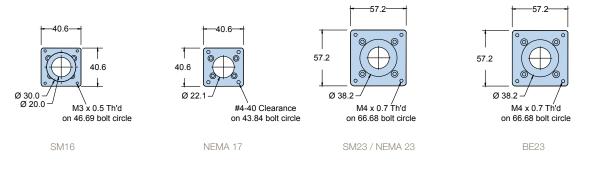
Used to easily accommodate the mounting of different servo or stepper motors.

402XR Dimensions Dimensions [mm] Optional limit/hc 18.5 17.8 62.0+ ensor pack Ø 6 mm shaft 22.5 22.5 25.0 35.4 1 Optional encoder pack ŧ 57.1 50.0 Ctr'd 20.3 1 (4) Tapped Mtg. Holes 4 mm Dowel Hole Slip Fit 4 - M4 x 0.7 Th'd -28.8 ⊕_.022 Top View Ø Motor Pilot Enlarged end view (with encoder and limit/home sensor pack) -109.0-• 57.5• J (mid travel) 57.1 ΰ End View Front View A C=space D with 50 mm ----C 28.0 Clearance holes for

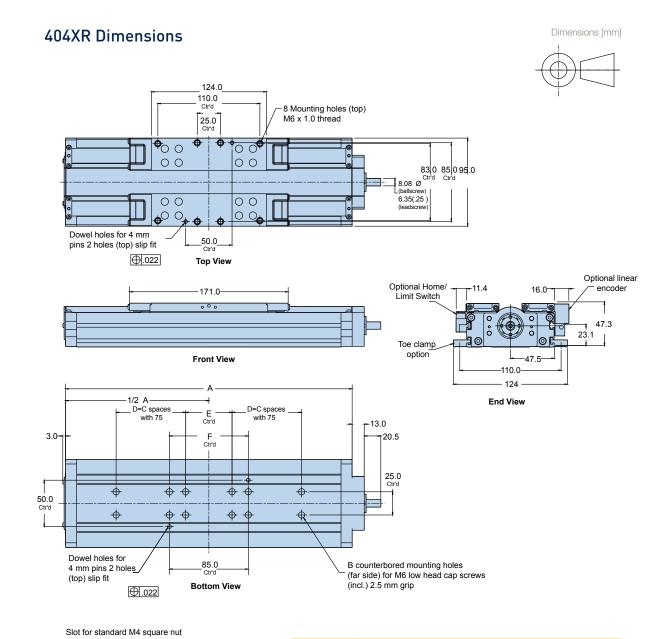
M4 low head screws

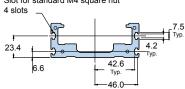
Ctr'd

	Stroke		Dime	Dimension [mm]				
Frame size	[mm]	Α	В	С	D*	J		
402100XR	100	320.5	83.5	200	4	184		
402150XR	150	370.5	83.5	250	5	214		
402200XR	200	420.5	83.5	300	6	234		
402300XR	300	520.5	83.5	400	8	284		
402400XR	400	620.5	83.5	500	10	334		
402600XR	600	820.5	83.5	700	14	434		


Bottom View

Order		Dime	Dimensions [mm]				
Code	Motor size	F	G	н			
M2	SM16	40.6	40.6	-			
M3	NEMA 23/ SM23	57.2	57.2	4			
M37	NEMA 17	40.6	40.6	-			
M61	BE23	57.2	57.2	8			


* D = Number of spaces

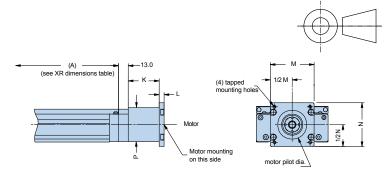

In-line motor adaptors

Used to easily accommodate the mounting of different servo or stepper motors.

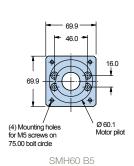
Typ. View: Slots in extruded profile

Frame size	Stroke	Dimensions [mm]							
Fidille Size	[mm]	Α	В	C*	D	E	F		
404050XR	50	259	4	-	-	-	-		
404100XR	100	309	12	1	75.0	50.0	85.0		
404150XR	150	359	12	1	75.0	50.0	85.0		
404200XR	200	409	12	1	75.0	50.0	85.0		
404250XR	250	459	16	2	150.0	50.0	85.0		
404300XR	300	509	16	2	150.0	50.0	85.0		
404350XR	350	559	16	2	150.0	50.0	85.0		
404400XR	400	609	20	3	225.0	50.0	85.0		
404450XR	450	659	20	3	225.0	50.0	85.0		
404500XR	500	709	20	3	225.0	50.0	85.0		
404550XR	550	759	24	4	300.0	50.0	85.0		
404600XR	600	809	24	4	300.0	50.0	85.0		

* C = Number of spaces to the left or to the right

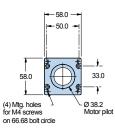


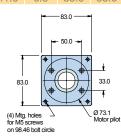
Dimensions [mm]


404XR In-line motor mounting

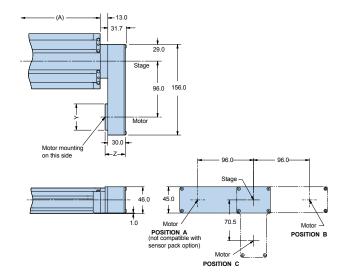
In-line motor mounting allows the motor to be mounted directly to the drive screw via the selected motor coupling.

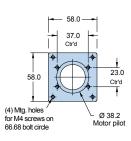
Used to easily accommodate the mounting of different frame sizes. These adapter plates can be ordered separately by part number below. Adaptor plates for additional motors on request.




Motor	Flange /	Dimensions [mm]							
flange Order No.	motor size	max. Motor shaft Ø	к	L	м	N	Р		
M51	SMH60B8/9	9.0	44.5	0.0	58.0	55.0	55.0		
M21	SMH60B5/11/ Neometric70	11.0	53.0	0.0	69.9	69.9	69.9		
M4	NEMA 34	9.5	41.0	12.5	83.0	83.0	45.0		
M3	NEMA 23	9.5	41.0	6.5	83.0	58.0	45.0		

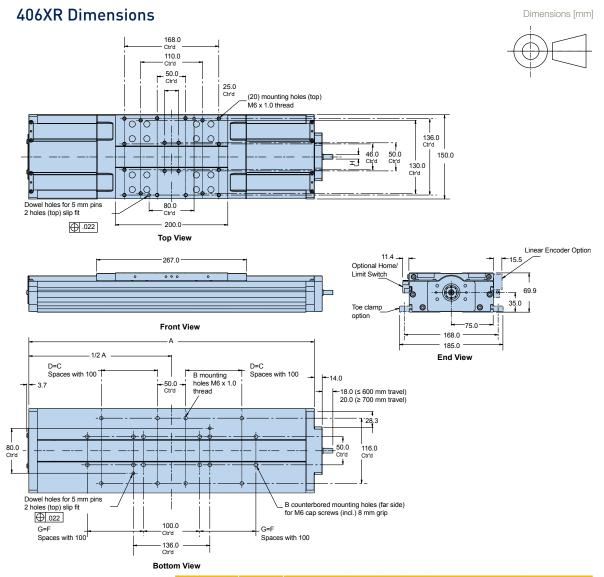
404XR parallel motor mounting


Parallel motor mounting is employed whenever a shorter overall unit length is needed. The motor is positioned along the sides or bottom of the table as designated by position A, B, or C. (No coupling required)



NEMA 23

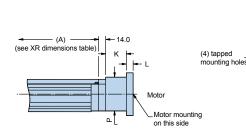
NEMA 34

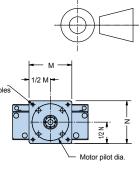


NEMA 23

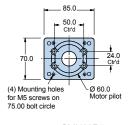
Motor fl	ange Ord	ler No.	Flange / Dimensions [mn		ons [mm]	
Pos. A	Pos. B	Pos. C	Motor size	Motor shaft Ø	Y	Z
M52	M53	M54	SMH60B8/9	9.0	55.0	37.0
M8	M9	M10	NEMA 23	12.7	58	34.5

		Stroke Dimensions [mm]									
Slot for standard M4	Frame size	[mm]	Ballscrew Ø	А	в	C*	D	Е	F	G	н
4 slots (top only)	4060100XR	100	16	408	8	1	100.0	12	1	100.0	8.0
	4060200XR	200	16	508	8	1	100.0	12	1	100.0	8.0
41.3	4060300XR	300	16	608	12	2	200.0	16	2	200.0	8.0
8.6 52 87	4060400XR	400	16	708	12	2	200.0	16	2	200.0	8.0
8.6 / 69.0 5.2 8.7 Slot for standard Typ	4060500XR	500	16	808	16	3	300.0	20	3	300.0	8.0
M5 square nut 2 slots (bottom only)	4060600XR	600	16	908	16	3	300.0	20	3	300.0	8.0
i iyp.	4060700XR	700	25	1008	20	4	400.0	24	4	400.0	10.0
View: Slots in extruded profile	4060800XR	800	25	1108	20	4	400.0	24	4	400.0	10.0
	4060900XR	900	25	1208	24	5	500.0	28	5	500.0	10.0
	4061000XR	1000	25	1308	24	5	500.0	28	5	500.0	10.0
	4061250XR	1250	25	1558	32	7	700.0	32	6	600.0	10.0
	4061500XR	1500	25	1808	36	8	800.0	40	8	800.0	10.0
	4061750XR	1750	25	2058	40	9	900.0	44	9	900.0	10.0
	4062000XR	2050	25	2308	44	10	1000.0	48	10	1000.0	10.0


* C = Number of spaces to the left or to the right

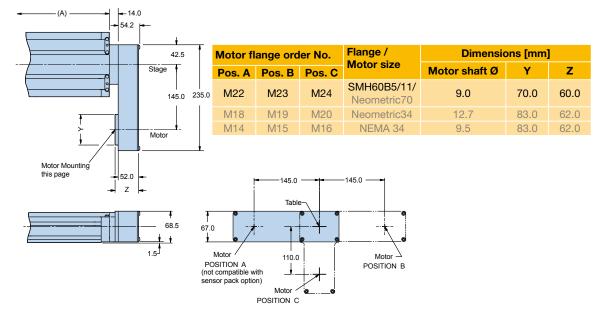


406XR In-line motor mounting

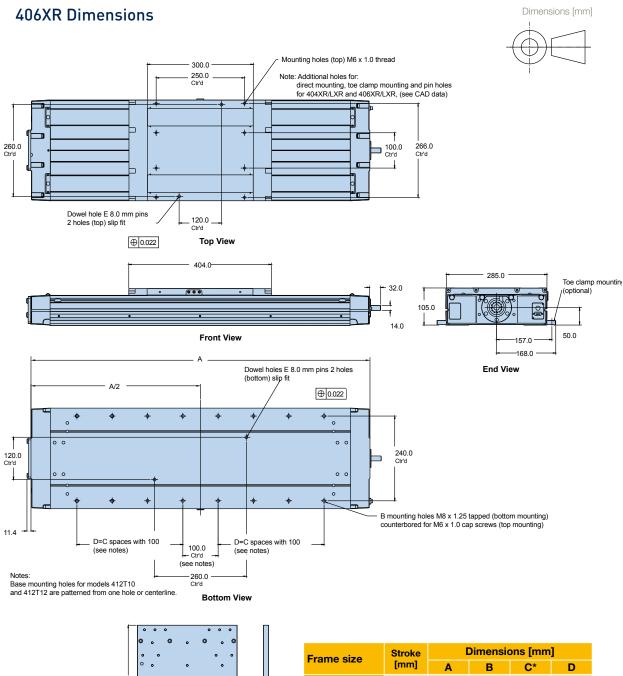

In-line motor mounting allows the motor to be mounted directly to the drive screw via the selected motor coupling.

Used to easily accommodate the mounting of different frame sizes. These adapter plates can be ordered separately by part number below. Adaptor plates for additional motors on request.

Dimensions [mm]



SMH60B5


Motor	Flange /		Dimensions [mm]						
flange Order No.	motor size	max. Motor shaft Ø	к	L	м	N	Р		
M29	SMH82/B8/14/ Neometric92	14.0	53.0	12.5	92.0	92.0	70.0		
M21	SMH60B5/11/ Neometric70	11.0	53.0	0.0	69.9	69.9	69.9		
M17	Neometric34	16	53.0	13.5	85.0	85.0	70.0		
M4	NEMA 34	16	53.0	13.5	85.0	85.0	70.0		
M3	NEMA 23	9.5	41.0	-	85.0	67.0	67.0		

406XR parallel motor mounting

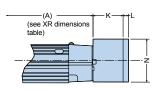
Parallel motor mounting is employed whenever a shorter overall unit length is needed. The motor is positioned along the sides or bottom of the table as designated by position A, B, or C. (No coupling required)

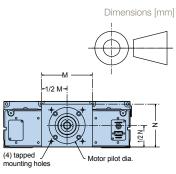
X-Y adaptor plate Art. No. 100-6784 (for mounting of all 404XR, 406XR or 412XR with toe

Frame size	Stroke	I	Dimensio	ons [mm]
Fidille Size	[mm]	Α	В	C*	D
412T01	150	764	12	2	200
412T02	250	864	16	3	300
412T03	350	964	16	3	300
412T04	650	1264	24	5	500
412T05	800	1414	24	5	500
412T06	1000	1614	28	6	600
412T07	1200	1814	32	7	700
412T08	1500	2114	40	9	900
412T09	1750	2364	44	10	1000
412T10	2000	2614	50	12	1200

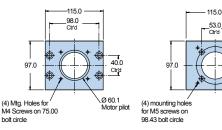
* C = Number of spaces to the left or to the right

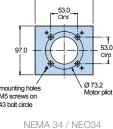
22

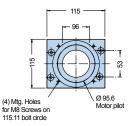

15.0



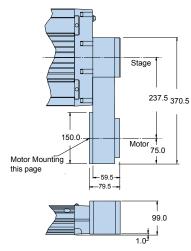
412XR In-line motor mounting


In-line motor mounting allows the motor to be mounted directly to the drive screw via theselected motor coupling.

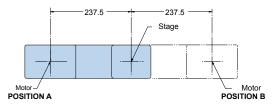

Used to easily accommodate the mounting of different frame sizes. These adaptor plates can be ordered separately by part number below. Adaptor plates for additional motors on request.



Motor flange	Flange /	Din	nensior	ns [mm]	
Order No.	motor size	max. Motor shaft Ø	к	L	м	Ν
M29	SMH82B8/14/ Neometric92	14.0	53.0	12.5	92.0	92.0
M33	SMH82/B5/19/ MH105/B5/19/ HDY115	19,0	100	0,0	115	115
M21	SMH60B5/11/ Neometric70	11.0	53.0	0.0	69.9	69.9
M17	Neometric34	16	68.0	12.0	115.0	97.0
M4	NEMA 34	16	68.0	12.0	115.0	97.0



SMH82/B5/19 / MH105/B5/19 / HDY115


SMH60B5

412XR parallel motor mounting

Parallel motor mounting is employed whenever a shorter overall unit length is needed. The motor is positioned along the sides or bottom of the table as designated by position A, B, or C. (No coupling required)

	Motor fl Order N		Flange / motor size	Dimensions [mm]							
	Pos. A	o. Pos. B		Motor shaft Ø	Y	z					
	M30	M31	SMH60B8/14/ Neometric92	14.0	150.0	79.5					
5	M22	M23	SMH60B5/11/ Neometric70	9.0	150.0	79.5					
	M18	M19	Neometric34	12.7	150.0	79.5					
	M14	M15	NEMA 34	9.5	150.0	79.5					

XR Series Ordering Information

401XR Ordering Information

50

100

150

200

300

 $\sqrt{}$

 $\sqrt{}$

 $\sqrt{}$

-

** 50 mm stroke on the 401XR do only allow for 2 sensors (sensor pack).

-

-

√

√

Fill in an order code from each of the numbered fields to create a complete model order code.

		1	2	3	4	5	6	7	8	9	10	11	12			
Order ex	ample	401	100	XR	М	S	D9	H3	L2	C3	M2	E2	R1			
1 Fran	ne size *					8	l imit s	ensor **								
401						U		without								
2 Trav	el – mm *						L2	N.C. sink	king, flyii	ng leads	5					
2 11av 050	50						L3	N.O. sink	king, flyi	ng leads	5					
100	100							N.C. sou		-						
150	150						L5	N.O. sou	rcing, fl	ying lead	ds					
200	200						L6	N.C. sink	ting, loc	king cor	nector					
300	300						L7	N.O. sink	king, loc	king cor	nnector					
3 Mod	lel						L8	N.C. sou	rcing, lo	cking co	onnector	r				
XR	Linear table						L9	N.O. sou	rcing loo	cking co	nnector					
4 Mou	nting						L11	N.C. sink	ing sen	sor pacl	<					
м	Metric						L12	N.O. sinł	king sen	sor pacl	<					
5 Grad	1e						L13	N.C. sou	rcing se	nsor pa	ck					
S	Standard						L14	N.O. sou	rcing se	nsor pa	ck					
Р	Precision (on	ly available	e with E3	3 or E4 e	encoder	9	Motor	or coupling								
	option)					U		No coup								
6 Driv	e screw *						C2	6.3 mm l	-	lham						
D3	10 mm lead						C3	6.3 mm l	oore Bel	lows						
D9	2 mm lead						C5	9.5 mm l	oore Bel	lows						
7 Horr	ne sensor **						C24	5 mm bore Oldham								
H1	without						C25	5 mm bo	re Bello	ws						
H2	N.C. sinking,	flying lead	ls													
H3	N.O. sinking,	, flying leac	ls			10		Mounts	r adapte	or.						
H4	N.C. sourcing	g, flying lea	ads					No moto motor m		51						
H5	N.O. sourcin	g, flying lea	ads				M2	prepared		16						
H6	N.C. sinking,	locking co	onnector				M3	prepared								
H7	N.O. sinking,	locking co	onnector				M37	prepared								
H8	N.C. sourcing	g, locking o	connecto	or				prepared								
H9	N.O. sourcing	g, locking o	connecto	or				propared		_0						
H11	N.C. sinking,	sensor pa	ck			11		er optior	1							
H12	N.O. sinking,	, sensor pa	ick				E1	without								
H13	N.C. sourcing	g, sensor p	back				E2	1.0 µm re								
H14	N.O. sourcing	g, sensor p	back				E3	0.50 µm								
							E4	1.0 µm re	esolutior	n						
° availab	le screw leads) 1XR				12	R1	required	designa	ition						
Stroke [r	nm] 40	10 mm	,													
	2 1011	10 1111														

402XR Ordering Information Fill in an order code from each of the numbered fields to create a complete model order code.

						6		-				
Order example	402	100	XR	М	S	D3	H3	L2	C3	M2	E2	R1

1 Fram	ne size *	8	Trave	l limit sensors
402			L1	without
2 Trave	el – mm *		L2	N.C. sinking, flying leads
100	100		L3	N.O. sinking, flying leads
150	150		L4	N.C. sourcing, flying leads
200	200		L5	N.O. sourcing, flying leads
300	300		L6	N.C. sinking, locking connector
400 600	400 600		L7	N.O. sinking, locking connector
000	000		L8	N.C. sourcing, locking connector
3 Mod			L9	N.O. sourcing, locking connector
XR	Linear table		L11	N.C. sinking, sensor pack
4 Mou	nting		L12	N.O. sinking, sensor pack
м	Metric	_	L13	N.C. sourcing, sensor pack
5 Grad			L14	N.O. sourcing, sensor pack
S	Standard		Mada	
Р	Precision (only available with E3 or E4	9	C1	r coupling No coupling
	encoder option)		C2	6.3 mm Oldham
6 Drive	e screw *		C3	6.3 mm Bellow
D2	5 mm lead		C4	9.5 mm Oldham*
D3	10 mm lead		C5	9.5 mm Bellows
7 Hom	le sensor		C24	5 mm Oldham
H1	without		C25	5 mm Bellows
H2	N.C. sinking, flying leads			MA 23 frame size only (M3, M61)
H3	N.O. sinking, flying leads			
H4	N.C. sourcing, flying leads	10		r adapter options
H5	N.O. sourcing, flying leads		M1	No motor adaptor
H6	N.C. sinking, locking connector			e motor mount
H7	N.O. sinking, locking connector		M2	prepared for SM16
H8	N.C. sourcing, locking connector		М3	prepared for NEMA23
Н9	N.O. sourcing locking connector		M37	prepared for NEMA17
H11	N.C. sinking sensor pack		M61	prepared for BE23
H12	N.O. sinking sensor pack	11	Enco	der option
H13	N.C. sourcing sensor pack		E1	without
H14	N.O. sourcing sensor pack		E2	1.0 µm resolution
	. .		E3	0.5 µm resolution
			E4	0.1 µm resolution
* availah	le screw leads	40	D 4	required decignation
availab		12	R1	required designation

Stroke [mm]	402	2XR
Stroke [mm]	5 mm	10 mm
100	\checkmark	-
150	\checkmark	-
200	\checkmark	-
300	-	\checkmark
400	-	\checkmark
600	-	\checkmark

404XR Ordering Information

Fill in an order code from each of the numbered fields to create a complete model order code.

	1					6								
Order example	404	450	XR	М	S	D33	H 4	L2	C3	M4	E1	B1	R1	P1

Fram	e size	8	Trave	l limit sensor assembly (two sensors)
404			L1	without
	el – mm *		L2	N.C. sinking, flying leads
050	50 (no pinning available)		L3	N.O. sinking, flying leads
100	100		L4	N.C. sourcing, flying leads
150	150		L5	N.O. sourcing, flying leads
200	200		L6	N.C. sinking, locking connector*
250	250		L7	N.O. sinking, locking connector*
300	300		 L8	N.C. sourcing, locking connector*
350	350			0
400	400		L9	N.O. sourcing, locking connector*
450	450		L11	N.C. sinking, sensor pack**
500	500		L12	N.O. sinking, sensor pack**
550 600	550		L13	N.C. sourcing, sensor pack**
600	600		L14	N.O. sourcing, sensor pack**
8 Mode	əl	9	Moto	r coupling
XR	Linear table	9	C1	No coupling (required for parallel mounting)
Mour	nting		C2	6.3 mm Oldham
м	Metric			
			C3	6.3 mm Bellows (required for precision grade)
6 Grad			C4	9.5 mm Oldham
S P	Standard		C5	9.5 mm Bellows (required for precision grade)
Р	Precision (only available with D2, D3, D4 drive screws)		C6	11 mm Oldham
	3010103/		C7	11 mm Bellows (required for precision grade)
	screw		C10	14 mm Oldham
D1	without screw (free travel) on request		C11	14 mm Bellows
D2	5 mm ballscrew		C22	9 mm Oldham
D3	10 mm ballscrew		C23	9 mm Bellows
D4	20 mm ballscrew (standard grade only)		010	
Home	e sensor assembly (one sensor)			
H1	without			
H2	N.C. sinking, flying leads			
H3	N.O. sinking, flying leads			
H4	N.C. sourcing, flying leads			
H5	N.O. sourcing, flying leads			
H6	N.C. sinking, locking connector*			
H7	N.O. sinking,locking connector*			
H8	N.C. sourcing, locking connector*			
	N.O. sourcing, locking connector*			
H9 H11	NC sinking sensor pack**			
H11	N.C. sinking sensor pack**			
	N.C. sinking sensor pack** N.O. sinking sensor pack** N.C. sourcing, sensor pack**			

* Sensors with locking connector include 5 m extension cable.

** The sensor pack includes 3 m cable.

10 Motor adaptor options

M1 No motor mounts

- In-line motor mount
- prepared for SMH60B8/9 M51
- prepared for SMH60B5/11 / Neometric70 M21
- M4 prepared for NEMA 34
- М3 prepared for NEMA 23
- Parallel position A
- M52 prepared for SMH60B8/9
- **M8** prepared for NEMA 23

Paralell position B

M53 prepared for SMH60B8/9

prepared for NEMA 23 M9

- Parallel position C M54
- prepared for SMH60B8/9 M10
- prepared for NEMA 23

11 Encoder option

- E1 without
- E2 1.0 µm resolution linear encoder (tape scale)
- E3 0.50 µm resolution linear encoder (tape scale)
- **E**4 0.1 µm resolution linear encoder (tape scale)
- E5 Rotary shaft encoder (not available with brake)

12 Brake option

- without B1
- **B2** Shaft brake (Refer to 404XR holding torque specifications to confirm maximum load. Not available with rotary encoder)

13 Cleanroom prep

- R1 Class 1000 compatible
- R2 Class 10 compatible (consult factory))
- R5 Class 1000 with easy lube system
- **R**8 Class 10 with easy lube system

14 Pinning option *

- **P1** No multi-axis pinning
- **P2** X axis transfer pinning to Y or Z axis - 30 arcsec **
- **P3** Y axis transfer pinning to X axis - 30 arcsec
- **P4** Z axis transfer pinning to X axis - 30 arcsec
- **P5** X axis transfer pinning to Y axis - 125 arcsec
- **P6** Y axis transfer pinning to X axis - 125 arcsec
- Pinning option is for pinning to other 404XR and 406XR tables. Transfer pinning is not available on some XR to LXR models. Contact factory for more information. Pinning XY orientation standard with Y motor at 3 o'clock position.
- ** Z pinning with bracket (consult factory for details).

406XR Ordering Information

Fill in an order code from each of the numbered fields to create a complete model order code.

	1					6								
Order example	406	900	XR	М	S	D3	H 4	L1	C7	M4	E1	B1	R1	P1

Frame	e size	8	_	limit sens	or assem	ıbly (tv	vo sens	sors)		
406			L1	without						
Travel	- mm *		L2	N.C. sinkir	ng, flying	leads				
	100		L3	N.O. sinki	ng, flying	leads				
200	200		L4	N.C. source	ing, flying	g leads				
300	300		L5	N.O. sourcing, flying leads						
400	400		L6	N.C. sinkir	ng, lockin	g conn	ector**			
500			L7	N.C. sinking, locking connector** N.O. sinking, locking connector**						
600			L8	N.C. sourc	-	-		*		
	700		L9	N.O. source	-	-				
800	900		L11	N.C. sinkir	0	0				
	1000				0	•				
	1250		L12	N.O. sinki	-	•				
	1500		L13	N.C. source	-					
	1750		L14	N.O. sourc	cing, sens	or pac	K***			
2000	2000	9	Motor	coupling						
lode			C1	No couplir	ng (require	ed for p	arallel	mountir	ıg)	
R	Linear table	_	C2	6.3 mm Oldham6.3 mm Bellows (required for precision grade)						
			C3							
Noun			C4	9.5 mm Oldham						
M	Metric		C5	9.5 mm Bellows (required for precision grade)						
Grade	• *		C6	11 mm Oldham11 mm Bellows (required for precision grade)						
6	Standard									
2	Precision		C7			uirea to	r precis	ion grad	.e)	
rive	screw *		C8	12.7 mm (
01	without screw (free travel)	_	C9	12.7 mm Bellows (required for precision grade) 14 mm Oldham						
D2	5 mm ballscrew		C10							
D3	10 mm ballscrew		C11	14 mm Be	lows (requ	uired fo	r precis	ion grad	e)	
D4	20 mm ballscrew									
D5	25 mm ballscrew									
Home	sensor assembly (one sensor)	*	ovoilab	le screw le	ada					
H1	without	— "		Precis	ion grade		Standa	rd grade		
H2	N.C. sinking, flying leads		Stroke [r	nmj _{5 mm}	10 mm	5 mm	10 mm	20 mm	25	
13	N.O. sinking, flying leads		100 200	√ √	√			√ √		
4	N.C. sourcing, flying leads		400	v √	v √	v √	v √	v √		
5	N.O. sourcing, flying leads		400	V	V	V	V	V		
16	N.C. sinking, locking connector**		500 600	√ √	√ √			√ √		
			700	-	-	\checkmark	\checkmark	-		
17	N.O. sinking, locking connector**		800 900	-	-			-		
	N.C. sourcing, locking connector**		1000	-	-	v √	v √	-		
-18					-	\checkmark	\checkmark			
H8 H9	N.O. sourcing, locking connector**		1250					-		
H8 H9 H11	N.O. sourcing, locking connector** N.C. sinking, sensor pack***		1500	-	-	V	V	-		
-18 -19	N.O. sourcing, locking connector**			-				-		

* Sensors with locking connector include 5 m extension cable.

*** The sensor pack includes 3 m cable.

10 Motor adaptor options M1 No motor adaptor In-line motor mount M29 prepared for SMH82B8/14 / Neometric92 M21 prepared for SMH60B5/11 / Neometric70 M17 prepared for Neomatric34 M4 prepared for NEMA 34 М3 prepared for NEMA 23 Parallel position A M22 prepared for SMH60B5/11 / Neometric70 M18 prepared for Neomatric34 M14 prepared for NEMA 34 Paralell position B M23 prepared for SMH60B5/11 / Neometric70 M19 prepared for Neomatric34 M15 prepared for NEMA 34 Parallel position C prepared for SMH60B5/11 / Neometric70 M24 M20 prepared for Neomatric34

M16 prepared for NEMA 34

11 Encoder option

- E1 without
- E2 1.0 µm resolution linear encoder (tape scale)
- E3 0.50 µm resolution linear encoder (tape scale)
- **E4** 0.1 μm resolution linear encoder (tape scale)
- E5 Rotary shaft encoder (not available with brake)

12 Brake option

B1 without

B2 Shaft Brake (Refer to 406XR holding torque specifications to confirm maximum load. Not available with rotary encoder)

13 Cleanroom prep

- **R1** Class 1000 Compatible
- R2 Class 10 Compatible (consult factory)
- R5 Class 1000 with Easy Lube System
- R8 Class 10 with Easy Lube System

14 Pinning Option *

- P1 No multi-axis pinning
- P2 X axis transfer pinning to Y or Z axis 30 arcsec **
- P3 Y axis transfer pinning to X axis 30 arcsec
- P4 Z axis transfer pinning to X axis 30 arcsec
- P5 X axis transfer pinning to Y axis 125 arcsec
- P6 Y axis transfer pinning to X axis 125 arcsec
- * Pinning option is for pinning to other 404XR and 406XR tables. Transfer pinning is not available on some XR to LXR models. Contact factory for more information. Pinning XY orientation standard with Y motor at 3 o'clock position.
- ** Z pinning with bracket (consult factory for details)

412XR Ordering Information

Fill in an order code from each of the numbered fields to create a complete model order code.

														14
Order example	412	T03	XR	М	S	D2	H3	L3	C15	M4	E3	B1	R1	P1

1	Fram	e size	8	Trave	el limit sensor *
	412		-	L1	without
_	_			L2	N.C. sinking, flying leads
2	Trave T01	1 – mm 150		L3	N.O. sinking, flying leads
	T01	250		L4	N.C. sourcing, flying leads
	T03	350		L5	N.O. sourcing, flying leads
	T04	650			cludes a 3 m extension cable with flying lead terminati-
	T05	800			. A 7.5 m extension cable can be ordered separately.
	T06	1000	9	Moto	or coupling
	T07	1200	9	C1	No coupling
	T08	1500		C4	9.5 mm Oldham
	Т09 Т10	1750 2000		C5	9.5 mm Bellows
	110	2000		C6	11 mm Oldham
3	Mode			C0 C7	11 mm Bellows
	XR	Linear table			12.7 mm Oldham
4	Moun	iting		C8	
	М	Metric		C9	12.7 mm Bellows
5	Grad	• *		C10	14 mm Oldham
5	S	Standard		C11	14 mm Bellows
	_			C12	16 mm Oldham
6		Screw		C13	16 mm Bellows
	D1	without screw (free travel)		C14	19 mm Oldham
	D2	5 mm lead screw		C15	19 mm Bellows
	D3	10 mm lead screw			
	D5	25 mm lead screw			
	D6	32 mm lead screw			
7	Home	e sensor *			
	H1	without			
	H2	N.C. sinking, flying leads			
	НЗ	N.O. sinking, flying leads			
	H4	N.C. sourcing, flying leads			
	H5	$N \cap$ sourcing flying leads			

H5 N.O. sourcing, flying leads

* Includes a 3 m extension cable with flying lead termination. A 7.5 m extension cable can be ordered separately.

 	analysis shares
M1	No motor adapter
In-line	e motor mount
M29	prepared for SMH82B8/14 / Neometric92
M33	prepared for SMH82/B5/19/MH105/B5/19/ HDY115
M21	prepared for SMH60B5/11 / Neometric70
M17	prepared for Neomatric34
M4	prepared for NEMA 34
Parall	el position A
M30	prepared for SMH82B8/14 / Neometric92
M22	prepared for SMH60B5/11 / Neometric70
M18	prepared for Neomatric34
M14	prepared for NEMA 34
Parall	el position B
M31	prepared for SMH82B8/14 / Neometric92
M23	prepared for SMH60B5/11 / Neometric70
M19	prepared for Neometric34
M15	prepared for NEMA 34

11 Encoder option

E1 without

10 Motor adapter options

- E2 1.0 µm resolution linear encoder (tape scale)
- **E3** 0.50 µm resolution linear encoder (tape scale)
- E4 0.1 µm resolution linear encoder (tape scale)
- **E5** 5.0 μm resolution linear encoder (tape scale)
- E6 Rotary shaft encoder (not available with brake)
- E7 Sine encoder
- 12 Brake option
 - B1 without
 - B2 Shaft Brake (Refer to 412XR holding torque specifications to confirm maximum load. Not available with rotary encoder)

13 Cleanroom prep

- R1 Class 1000 with strip seals
- R2 Class 100 without strip seals

14 Pinning option *

P1 No multi-axis pinning

- P2 X axis transfer pinning to Y or Z axis 30 arc seconds **
- P3 Y axis transfer pinning to X axis 30 arcsec (includes a required 15 mm thick adapter)
- P4 Z axis transfer pinning to X axis 30 arc seconds
- * Pinning option is for pinning to other 404XR and 406XR tables. Transfer pinning is not available on some XR to LXR models. Contact factory for more information. Pinning XY orientation standard with Y motor at 3 o'clock position.
- position. ** Z pinning with bracket (consult factory for details).

A Company of the second
32

33

×
34

www.parker-eme.com/xr

WARNING - USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RE-LATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Parker Worldwide

AE – UAE, Dubai Tel: +971 4 8127100 parker.me@parker.com

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BR – Brazil, Cachoeirinha RS Tel: +55 51 3470 9144

BY – Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

CH – Switzerland, Etoy Tel: +41 (0) 21 821 02 30 parker.switzerland@parker.com

CL – Chile, Santiago Tel: +56 2 623 1216

CN – China, Shanghai Tel: +86 21 5031 2525

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES – Spain, Madrid Tel: +34 902 33 00 01 parker.spain@parker.com

FI – Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

© 2010 Parker Hannifin Corporation

FR – France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HK – Hong Kong Tel: +852 2428 8008

HU – Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com

IE – Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IN – India, Mumbai Tel: +91 22 6513 7081-85

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

JP – Japan, Tokyo Tel: +(81) 3 6408 3901

KR – South Korea, Seoul Tel: +82 2 559 0400

KZ – Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

LV – Latvia, Riga Tel: +371 6 745 2601 parker.latvia@parker.com

MX – Mexico, Apodaca Tel: +52 81 8156 6000

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Ski Tel: +47 64 91 10 00 parker.norway@parker.com

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

We reserve the right to make technical changes. The data correspond to the technical state at the time of printing

PT – Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com **RO – Romania,** Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU – Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SG – Singapore Tel: +65 6887 6300

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TH – Thailand, Bangkok Tel: +662 717 8140

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

TW – Taiwan, Taipei Tel: +886 2 2298 8987

UA – Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

US – USA, Cleveland Tel: +1 216 896 3000

VE – Venezuela, Caracas Tel: +58 212 238 5422

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, ES, FI, FR, IE, IT, NL, NO, PL, PT, RU, SE, UK, ZA)

192-540012N4

May 2010

2009-03-11

Parker Hannifin GmbH Electromechanical Automation Robert-Bosch-Straße 22 D-77656 Offenburg, Germany +49 (0)781 / 509-0 +49 (0)781 / 509-98176 sales.automation@parker.com www.parker-eme.com